Spirometrie

Provedení v systému PowerLab:

Spust'te program SPIROMETRIE dvojklikem na stejnojmennou ikonu na ploše.

Spirometrický snímač nechte položený na stole, v 1. kanálu *Flow* (průtok) v rozbalovacím seznamu zvolte *Spirometry Pod* a stiskněte tlačítko *Zero* (nulování), potvrďte stiskem *Ok*.

Vyšetřovaná osoba sedí na židli tak, aby nemohla sledovat záznam na monitoru a vloží si spirometrický snímač s nasazeným filtrem a sterilním náustkem do úst (snímač drží v horizontální rovině, bílé hadičky by měly směřovat vzhůru). Na nos nasaď te svorku.

Klikněte na tlačítko *Start.* 1. kanál zobrazuje rychlost proudění vzduchu snímačem, tedy <u>průtok</u> v ml/s, 2. kanál integrál průtoku, tedy <u>objem</u> v litrech. Pokud se výdech zobrazuje směrem nahoru a nádech dolů, v 1. kanálu *Flow* (průtok) v rozbalovacím seznamu zvolte *Spirometry Pod* a zatrhněte položku *Invert* (převrátit), potvrďte *Ok*.

Zaznamenejte následující situace: Klidové dýchání v délce cca 1 min a 20 s; 4 klidové dechové cykly, 1 maximální nádech, 4 klidové dechové cykly a poté maximální výdech; 4 klidové dechové cykly, poté maximální nádech následovaný maximálním výdechem (vydechnout vše a s maximální rychlostí!) a 4 klidovými dechovými cykly; hyperventilace po dobu cca 30 s; apnoická pauza v inspiriu; apnoická pauza v expiriu.

Uložte záznam do složky Dokumenty pod názvem "spirometrieXY", kde XY odpovídá iniciálám vyšetřované osoby, typ souboru Data Chart File (*.adicht).

Ve 2. kanálu *Volume* (objem) změřte a vypočítejte parametry v níže uvedené tabulce. Měřené hodnoty se zobrazují v miniokně *Volume* (objem), časový rozdíl v miniokně *Rate/Time*.

Dechový parametr	Zkratka	Výsledky měření	Jednotka					
• Klidové dýchání								
Frekvence	f		(počet dechů/min)					
Dechový objem	VT		litr (l)					
Minutová Ventilace	$\dot{\mathbf{V}}_{\mathrm{E}} = \mathbf{V}_{\mathrm{T}} \times f$		l/min					
• IRV, ERV, VC								
Inspirační rezervní objem	IRV		1					
Inspirační kapacita	IC = VT + IRV		1					
Expirační rezervní objem	ERV		1					
Expirační kapacita	EC = VT + ERV		1					
Vitální kapacita (změřená)	VC		1					
Vitální kapacita (vypočítaná)	$VC = IRV + ERV + V_T$		1					
• FVC , FEV_1								
Usilovná vitální kapacita	FVC		1					
Jednosekundová kapacita	FEV_1		1					
	$FEV_1/FVC \times 100$		%					
• Hyperventilace								
Frekvence	f		(počet dechů/min)					
Dechový objem	V _T		1					
Maximální Minutová Ventilace (MMV)	$\dot{\mathbf{V}}_{\mathrm{Emax}} = \mathbf{V}_{\mathrm{T}} \times f$		l/min					
• Apnoická pauza v inspiriu			S					
• Apnoická pauza v expiriu			S					

Překreslete a popište záznamy: → klidové dýchání a vitální kapacita

jednosekundová vitální kapacita (rozepsaný výdech vitální kapacity) zaznamenejte si změny křivky i při obstrukčním a restrikčním plicním onemocnění

Závěr:

•	• •	 • •	•	• •	• •	• •	••	• •	• •	••	• •	• •	••	• •		• •	•••	• •	• •	• •	• •	•	• •		• •	• •	• •	 	•••	 • •	•••	• •	••	•••	•••	•••	 	• •	• •	••	••	• •		••	• •	• •	••	• •	• •	• •	• •	• •	•
•	• •	 • •	• •	••	• •	• •	• •	• •	••	• •	• •	• •	• •	• •	• •	• •	•••	• •	• •	• •	• •	• •	••	••	• •	• •	• •	 	• • •	 ••	•••	••	• •	•••	• •	•••	 	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	·
•	• •	 • •	• •	••	• •	• •	• •	• •	••	• •	• •	• •	• •	• •	• •	• •	•••	• •	• •	• •	• •	• •	••	••	• •	• •	• •	 	• • •	 ••	•••	••	• •	•••	• •	•••	 	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	•

Elektrický model aortálního pružníku

Průběh řady fyziologických funkcí i jejich regulaci lze dnes modelovat. Využíváme různých analogií pro sestavení například mechanických či elektrických obvodů. V dnešní době jednoznačně převažují modely počítačové.

V našem programu, který je instalován na osobním počítači, je simulace funkce aorty založena na jednoduchém pružníkovém modelu, jehož prapůvodem je analogie elektrického obvodu. Ten vychází z Ohmova zákona. Zjednodušeně řečeno - krevní tlak v aortě (P) je přímo úměrný objemu krve (V), který je ve fázi systoly vyvržen do aorty. Tomuto ději odpovídá rovnice P = (V - Vo)/C, kde Vo je objem aorty při nulovém tlaku a C = poddajnost - pružnost (compliance), vyjádřená v ml/mmHg. Rovnice pro změnu tlaku (dP) a změnu objemu (dV) je dP = dV/C.

Výhoda předkládaného počítačového modelu spočívá v možnosti měnit pouze jednu fyziologickou veličinu (tepový objem, periferní odpor, pružnost aorty). Změnou pouze jedné veličiny vystoupí do popředí v "čisté podobě" změny krevního tlaku – a to jak systolického, diastolického, pulsového i středního. Tato modelace ale nemá kvalitu biologického pokusu – například na zvířeti, protože výše popsaný model nepracuje se zpětnými vazbami.

Hlavní záznam na obrazovce monitoru zobrazuje průběh aortálního tlaku v mmHg s časovou osou v sekundách, dolní křivka zobrazuje rychlost krevního toku v metrech za sekundu v oblasti ústí semilunární aortální chlopně.

Provedení:

- 1. Vzhledem k nové instalaci programu bude postup vysvětlen přímo v praktických cvičeních
- 2. Na obrazovku monitoru lze simulovat postupně 4 odlišné situace. Doporučujeme následující pořadí: výchozí klidové hodnoty, změna ve smyslu mínus, opět výchozí klidové hodnoty, změna ve smyslu plus.

Změny systolického výdeje

Zkontrolujeme, případně zadáme, vstupní veličiny, které modelově odpovídají klidovým fyziologickým hodnotám:

SV - systolický výdej = tepový objem	=	70 ml,
HR - tepová frekvence	=	75/min
R - periferní odpor	=	1 mmHg.s/ml
C - pružnost (compliance)	=	1,2 ml/mmHg.
	c · 1	. 1 / 1 1 1 /

Klikem na Graph se objeví tlaková křivka fyziologických hodnot.

Snížíme hodnoty SV (45 nebo 60 ml), počkáme na provedení simulace. Všímáme si změn.

Kliknutím na Reset parameters se vrátíme k fyziologickým hodnotám.

Zvýšíme hodnoty SV na 80ml a klikem na Graph počkáme na simulaci.

Pozorované změny systolického a diastolického krevního tlaku, středního tlaku a tlakové amplitudy zaznamenáme do protokolu a popíšeme.

Vyčistíme obrazovku kliknutím na *clear graph* a obdobným způsobem modelujeme další veličiny:

Změny periferního odporu

Vstupní hodnoty: snížený periferní odpor R = 0.5 - 0.8 mmHg.s/mlzvýšený periferní odpor R = 1.2 - 1.5 mmHg.s/ml

Změny pružnosti cév - compliance

Vstupní hodnoty: hodnoty snížené compliance C = 0.5 ml/mmHg hodnoty zvýšené compliance C = 2.0 ml/mmHg

Srdeční zástava

Vstupní hodnoty: SV = 0

Protokol: překreslete schematicky namodelované záznamy, popište slovně změny Změna systolického objemu

Změna periferního odporu

Změna pružnosti cév (compliance)

Zástava srdeční

Zájmová úloha:

Namodelujte a do závěru popište změny TK v průběhu pobytu v sauně:

- 1. Pobyt v sauně (teplo snižuje periferní odpor).
- 2. Zchlazení ve studené vodě (chlad zvyšuje periferní odpor).
- 3. Namodelujte průběh TK v průběhu pobytu v sauně u dítěte, popište.

(děti mají vysokou elasticitu – compliance - cév)

4. Namodelujte průběh TK v průběhu pobytu v sauně u osob se sníženou elasticitou cév, popište.

Závěr:	 	

PROUDĚNÍ KRVE V ŽILÁCH

Cíl cvičení: Získat přehled o možnostech vyšetřování žilního systému. **Potřeby:**Tonometr, fonendoskop. **Postup práce:**

- 1. K pozorování vyberte posluchače, jemuž se zřetelně rýsuji žilní pleteně pod kůží předloktí a hřbetu ruky. Nejprve zůstane chvíli stát se svěšenými horními končetinami. Vidíte, jak se povrchně uložené žíly postupně plní městnající se krví.
- 2. Uchopte jedno jeho předloktí a pomalu je ohýbejte k lokti. Všimněte si postupného vyprazdňování žil při pohybu ruky směrem k srdeční bázi (přibližně v rovině 2. a 3. žeberní chrupavky).
- 3. U této vyšetřované osoby změřte tlak krve (viz cvičení VIII), manžetu tonometru ponechejte na paži a nafoukněte ji na tlak asi o 3 kPa (20 mmHg) nižší než byl tlak systolický, takže krev sice do předloktí může přitékat, avšak nemůže stlačenými žilami odtékat. Pozorujte, jak se opět žíly plní městnající se krví a zřetelně vyvstávají pod kůží.
- 4. Vyberte si větší žílu, kterou můžete na předloktí v co nejdelším úseku sledovat a stlačte ji jedním prstem blízko jejího výstupu pod kůží u zápěstí. Prst druhé ruky položte na žílu těsně k prvnímu prstu a vytlačte jím krev směrem k srdci. Prst, jímž jste krev vytlačili, nechejte na žíle přiložený a pozorujte, že původně naplněná žíla se jeví jako mělká rýha. Pak povolte prst u zápěstí a sledujte, jak se žíla postupně od periferie plní krví.
- 5. Proveďte znovu tentýž pokus s vytlačením krve z žíly, ponechejte přitlačený prst u zápěstí a uvolněte stlačení blíže k srdci. Městnající krev se rovněž hrne do vyprázdněné žíly, avšak pouze k nejbližší chlopni. Chlopeň se projeví jako uzlíček na žíle, proximální část žíly je přeplněna krví, kdežto distální úsek zůstane prázdný.

Funkční zkoušky při onemocnění žil:

<u>Trendelenburgova zkouška</u> slouží k diagnóze insuficience chlopní vena saphena: na zvednuté dolní končetině vytlačíme krev z varixů, v. saphena pod tříslem komprimujeme. Nemocný se postaví na nohy – pokud dojde k rychlému naplnění varixů (méně než 20 s): insuficience vv. perforantes = test je pozitivní. Když po třiceti sekundách povolíme kompresi v. saphena – dojde k plnění žil distálním směrem: insuficience chlopní povrchových žil = test je dvojnásobně pozitivní.

<u>Perthesova zkouška</u> slouží k určení průchodnosti spojek mezi povrchovým a hlubokým žilním systémem: Přiložíme gumovou hadici nebo obinadlo pod tříslo a pod koleno, 2 minuty chodíme. U zdravého jedince se safény vyprázdní a bolest se neobjeví, při uzávěru hlubokého žilního systému se objeví bolest a zvýrazní se varixy.

Testy na hlubokou žilní trombózu:

Plantární znamení: tlaková bolestivost plosky nohy

Homansovo znamení: bolest v lýtku při flexi nohy (střídavě prováděná dorzální a plantární flexe v hlezenním kloubu při flexi v kloubu kolenním)

Rozdíl v objemu dolní končetiny větší než 2 cm v těchto místech např.: kolem kotníku, ve výši kolena, 10–15 cm nad a pod patelou

Protokol:

Nakreslete schéma žíly a chlopní. Nakreslete průběh žil na volární straně předloktí a vyznačte umístění chlopní dle vlastního pokusu.

Závěr: