Regulation

in cardiovascular system

Types of regulation - general view

2 basic types: ✓ Nervous regulation ✓ Humoral regulation ✓ Feedback control - negative ✓ positive

autoregulation – local regulation – system regulation

REGULATION IN CARDIOVASCULAR SYSTEM

Main function:

- keep relatively constantaneous arterial blood pressure
- Keep perfusion of tissues

Regulation of vessels tone

 Tone of the vessels = basic tension of the smooth muscle inside of the wall (vasoconstriction x vasodilatation)

Regulation - local autoregulation
 - system regulation

Autoregulation

Autoregulation – the capacity of tissues to regulate their own blood flow

Myogenic theory – Bayliss phenomenon (as the pressure rises, the blood vessels are distended and the vascular smooth muscle fibres that surround the vessels contract; the wall tension is proportional to the distending pressure times the radius of the vessels – law of Laplace)

Autoregulation

- Metabolic theory vasodilator substances tend to accumulate in active tissue, and these metabolites also contribute to autoregulation
 - ending products of energetic metabolism CO₂, lactate acid, K⁺
 - effect of hypoxia (circulation: vasodilatation x pulmonary circulation: vasoconstriction)
 - Adenosin coronary circulation: vasodilatation

Autoregulation

- by substances which releasing from:
 - endothelium
 - tissues

Substances secreted by the ENDOTHELIUM Vasodilatation: Nitric oxide (NO) from endothelial cells (originally called: EDRF) Prostacyclin is produced by endothelial cells

Thromboxane A2 promotes platelet aggregation (important prostacyclin – thromboxan balance) *Vazoconstriction:*

> Endothelins (polypeptids – 21peptides) three isopeptides: ET 1, ET 2, ET 3

Substances secreted by the tissues: Histamine – primarily tissue hormones.

General affect: vasodilatation - decrease periphery resistence, blood pressure

KININS: 2 related vasodilated peptides Bradykinin + lysylbradykinin (kallidin).

Sweat glands, salivary glands 10x strongers than histamine Relaxation of smooth muscle, decrease blood pressure

Systemic regulation

By hormones

Catecholamines – epinephrine, norepinephrine - effect as activation of sympathetic system RAAS - stress situation ADH - general vasoconstriction Natriuretic hormones - vasodilatation

Neural regulatory mechanism

Autonomic nervous system

Sympathetic: vasoconstriction

All blood vessels except capillaries and venules contain smooth muscle and receive motor nerve fibers from sympathetic division of ANS (noradrenergic fibers)

- Regulation of tissue blood flow
- Regulation of blood pressure

Parasympathetic part: vasodilatation

Only sacral parasympathetic cholinergic fibres (Ach) inervated arteriols from external sex organs

The regulation of the heart:

Rami cardiaci n. vagi

Cardiac decelerator center - medula oblongata (ncl.dorsalis, ncl. ambiguus) – parasympathetic fibres of nervus vagus

: vagal tone (tonic vagal discharge)

Negative chronotropic effect (on heart rate) Negative inotropic effect (on contractility) Negative dromotropic effect (on conductive tissue)

The regulation of the heart:

– nn. cardiaci

Cardiac accelerator center – spinal cord, sympathetic ganglia – sympathetic NS

Positive chronotropic effect (on heart rate) Positive inotropic effect (on contractility) Positive dromotropic effect (on conductive tissue)

- Vasomotor centre (regulation for function of vessels) Medula oblongata
- ✓ presoric area (rostral and lateral part vasoconstriction increase blood pressure

✓ depresoric area (medio-caudalis part – vasodilatation, decrease of blood pressure)

Influence by central nervous system

- cerebral cortex
- limbic cortex
- hypothalamus

Regulation of blood pressure

- Short term regulation
 - baroreflex

Middle - term regulation

- humorals regulation
- sympathetic catecholamines
- RAAS
- ADH

Long – term regulation

- kidney regulation

Classification BP values

category	Systolic BP	Diastolic BP
	(mmHg)	(mmHg)
optimal	< 120	< 80
normal	120 – 129	80 - 84
high normal pressure	130 – 139	85 - 89
Hypertension - mild	140 – 159	90 - 99
Hypertension - moderate	160 – 179	100 – 109
Hypertension - severe	≥ 180	≥ 110
Izolated systolic hypertension	≥ 140	< 90

According the Guidelines of European Society of Cardiology 2013

Variability of circulatory parameters

- Heart rate
- Blood pressures systolic and diastolic

 variability expresses its fluctuation around the average value at certain time intervals (or in various conditions)

Heart Rate Variability (HRV)

- Informs us about the activity of the vagus nerve (tonic activity of n.vagus = vagal tone)
- <u>Time analysis:</u>
- from Holter monitoring ECG or 5 30min records ECG
- It is basically a statistical evaluation +/-standard deviation
- Disables intervals differing by more than 20% from the average, thus further processed only normal (NN) intervals and evaluated by the standard deviation of all NN sequence for 24h

- Spectral analysis:
- Carried out under standard conditions at various maneuvers (supine, standing); evaluated with 300 representative intervals RR / NN /
- Another mathematical processing (Fourier transform) -length RR intervals are converted to cycles in Hz
- The spectrum is divided into several components

 low (LF: the sympathetic modulation) and high
 frequency (HF: vagal modulation)
- People with reduced heart rate variability have a 5 times higher risk of death