03

Synapse and integration of information at the synaptic level

Indtroduction

Synapse

 Communication between neurons

Synapse

 Communication between neurons

- Electrical
- Chemical

Electrical synapse

- Evolutionary old
- Less frequent than ch.
- Ubiquitous

Electrical synapse

- Evolutionary old
- Less frequent than ch.
- Ubiquitous
- Gap junctions
- Bidirectional tranmission
- Fast
- Strength of signal may decrease

Chemical synapse

- Evolutionary young
- Majority type of s.

Chemical synapse

- Evolutionary young
- Majority type of s.
- Unidirectional
- Synaptic cleft
- Neurotransmitter
- Constant signal strength

Neurotrasnsmiter

Present in presinaptic neuron

Neurotrasnsmiter

- Present in presinaptic neuron
- Released into the synaptic cleft due to depolarization of presynaptic neuron (Ca²⁺ dependent mechanism)

Neurotrasnsmiter

- Present in presinaptic neuron
- Released into the synaptic cleft due to depolarization of presynaptic neuron (Ca²⁺ dependent mechanism)
- Specific receptor has to be present in postsynaptical membrane

Excitatory/inhibtory postsynaptic potencial

Signal summation

- Temporal
- Spatial

Signal summation

Synaptic convergence

"Convergence" of multiple input fibers onto a single neuron. A, Multiple input fibers from a single source. B, Input fibers from multiple separate sources.

Synaptic convergence

Average number of synapses in one neuronal cell in primates

- ✓ Primary visual cortex (area17)
 - aprox. 4 000
- ✓ Primary motor cortex (area4)
 - aprox. 60 000

"Convergence" of multiple input fibers onto a single neuron. A, Multiple input fibers from a single source. B, Input fibers from multiple separate sources.

Synaptic divergence

Figure 46-11

"Divergence" in neuronal pathways. A, Divergence within a pathway to cause "amplification" of the signal. B, Divergence into multiple tracts to transmit the signal to separate areas.

Networking

Networking

Neuromuscular junction

Neurotransmission vs. Neuromodulation

Neurotransmission vs. Neuromodulation

Information transmission

Regulation of NS activity

Neurotransmission

- Information transmission
- Specific

vs. Neuromodulation

- Regulation of NS activity
- Difuse (volume transmission)

Neurotransmission

vs. Neuromodulation

Information transmission

Regulation of NS activity

Specific

Difuse (volume transmission)

• Receptors – ion channels

• Receptors – G-proteins

Neurotransmission

- Information transmission
- Specific

- Receptors ion channels
- Short duration
 - membrane potential changes

vs. Neuromodulation

- Regulation of NS activity
- Diffuse (volume transmission)
- Receptors G-proteins
- Longer duration
 - changes in synaptic properties

THE STRUCTURES OF NEUROTRANSMITTERS

STRUCTURE KEY:

■ Carbon atom ○ Hydrogen atom ⑥ Oxygen atom ℕ Nitrogen atom ℝ Rest of molecule

ADRENALINE

Fight or flight neurotransmitter

NORADRENALINE

Concentration neurotransmitter

DOPAMINE

SEROTONIN

Produced in stressful or exciting situations. Increases heart rate & blood flow, leading to a physical boost & heightened awareness.

Affects attention & responding actions in the brain, & involved in fight or flight response. Contracts blood vessels, increasing blood flow.

Feelings of pleasure, and also addiction, movement, and motivation. People repeat behaviours that lead to dopamine release.

GLUTAMATE

Contributes to well-being & happiness; helps sleep cycle & digestive system regulation. Affected by exercise & light exposure.

GABA

Calming neurotransmitter

ENDORPHINS

Euphoria neurotransmitters

Calms firing nerves in CNS. High levels improve focus; low levels cause anxiety. Also contributes to motor control & vision.

Involved in thought, learning, & memory. Activates muscle action in the body. Also associated with attention and awakening.

Most common brain neurotransmitter. Involved in learning & memory, regulates development & creation of nerve contacts. Released during exercise, excitement, & sex, producing well-being & euphoria, reducing pain. Biologically active section shown.

© COMPOUND INTEREST 2015 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

Acetylcholin

- Nucleus basalis (Meynerti) abd other nuclei
- Nicotin receptors
- Muscarin receptors

- Sleep/wake regulation
- Cognitive functions
- Behavior
- Emotions

Noradrenalin

- Locus coeruleus
- Nuclei raphe caudalis
- Vigilance
- Responsiveness to unexpected stimuli
- Memory
- Learning

Dopamin

- Nigrostriatal system
 - Movement
 - Sensory stimuli
- Ventrotegmentno-mesolimbicfrontal system
 - Reward
 - Cognitive function
 - Emotional behavior
- Tubero-infundibular system
 - Hypotalamic-pituatory regulation
- D1 receptors excitatory
- D2 receptors inhibitory

Serotonin

- Nuclei raphe rostralis
- Nuclei raphe caudalis
- Anxiety
- Impulsive behavior

Neuromodulatory systems

Jeffrey L. Krichmar, Adaptive Behavior 2008; 16; 385

Neuromodulatory systems

