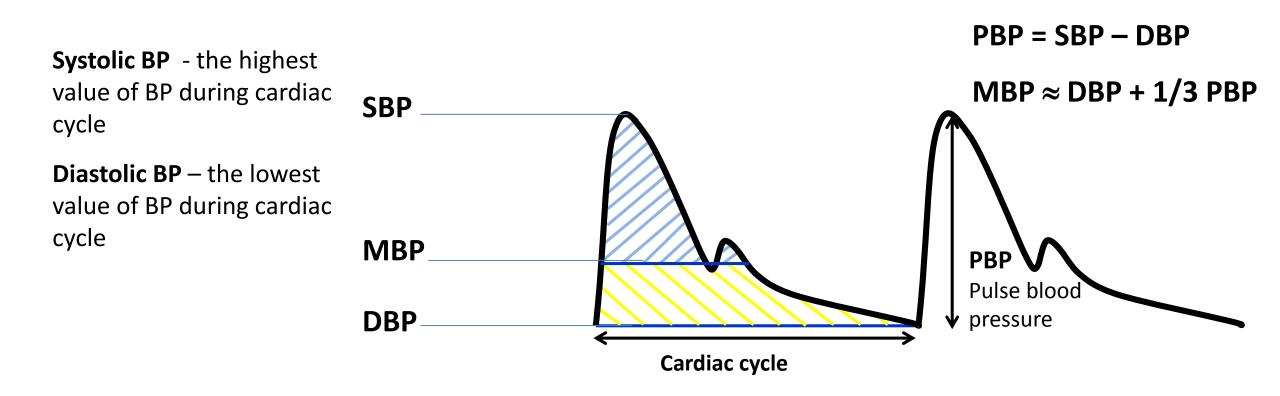
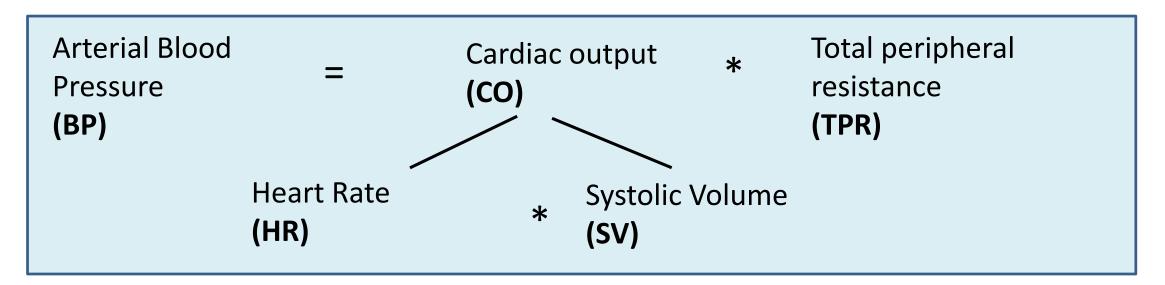
(VIII.) Blood pressure in men (IX.) Non-invasive methods of blood pressure measurement

Physiology I – practicals


Dep. of Physiology, Fac. of Medicine, MU 2015 © Jana Svačinová

Arterial blood pressure during heart cycle


Blood pressure (BP): pressure of blood on arterial wall

(arterial BP: portion of energy of LV contraction transformed into lateral pressure is put on arterial wall)

Mean BP (MBP): calculated MBP in the course of one heart cycle (integral of pressure curve)

Blood pressure depends on cardiac output and peripheral resistance

- Systolic BP depends mainly on CO
- Diastolic BP depends mainly on TPR

Regulation of blood pressure

• Short-term – baroreflex

• Medium-term – renin-angiotensin-aldosterone system (RAAS)

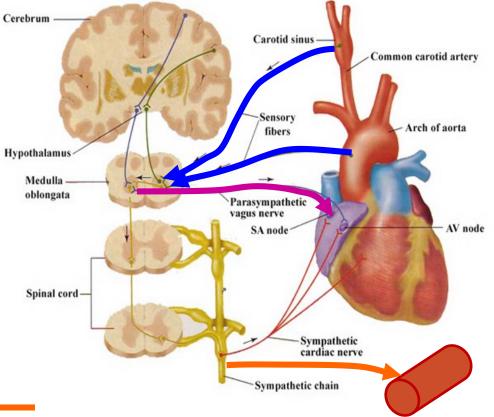
• Long-term – excretion of Na⁺ via kidneys

Regulation of blood pressure – baroreflex

Autonomic nervous system

Sympathetic NS (\uparrow BP, HR, SV, TPR) **X** *Parasympathetic NS* (\downarrow BP, HR, SV, TPR)

Function: regulation of short-term changes of BP via modulation of HR and TPR


Baroreceptors – carotid sinus + aortic arch *Afferent nerve*: vagus nerves, n.XI.

Cardiac branch of baroreflex: Decrease of BP induces increase c HR and vice versa *Efferent nerve*: vagus nerves (to SA node)

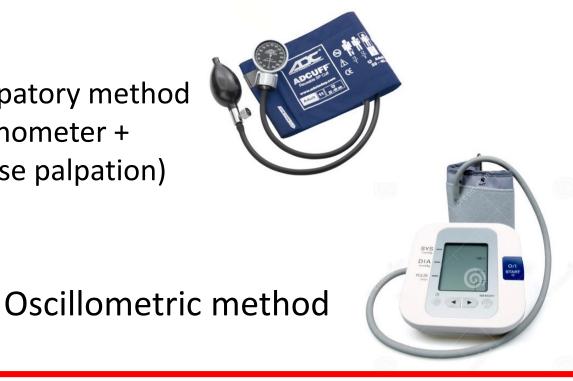
Peripheral branch of baroreflex: Decrease of BP induces increase of TPR

- Vasoconstriction of small arteries
- Venoconstriction redistribution of blood volume

Efferent nerve: sympathetic nerve fibers to peripheral vessels

Changes of BP

Short-term effects


- Amount of blood affects SV (haemorrhage, dehydration)
- External pressure on arteries intrathoracic a intraabdominal pressure (coughing, defecation, childbirth, ventilation)
- Body position orthostatic and clinostatic reaction
- Mental conditions emotions, stress, ...
- Physical activity
- External temperature
- Drugs, alcohol,...

Long-term effects

- Age (lower BP in small children than in elderly people
- Gender (higher BP in men)

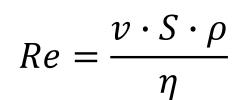
Methods of BP measurement

Palpatory method (tonometer + pulse palpation)

Invasive vs. Non-invasive Direct vs. Indirect

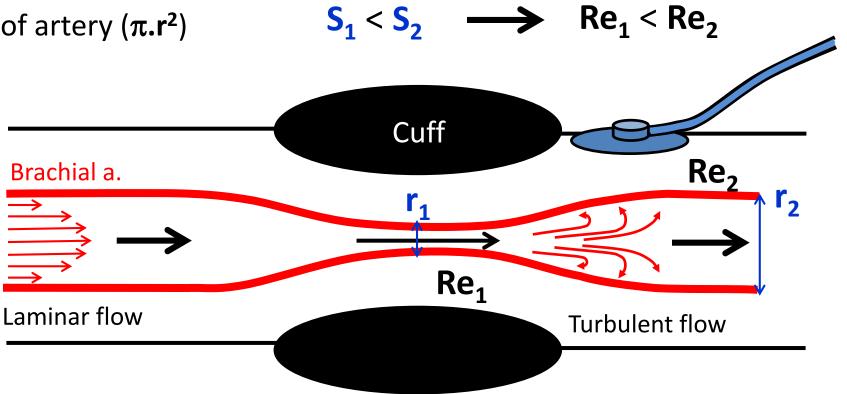
Auscultatory method (tonometer + stethoscope)

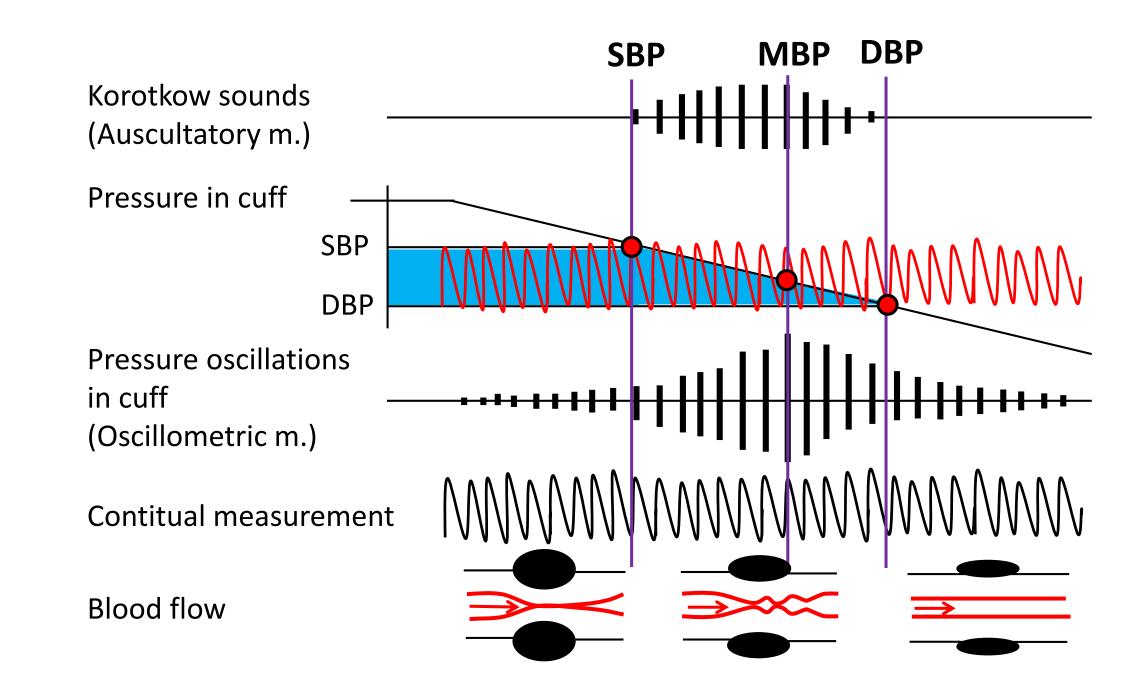
Other possibilities:


24-hours measurement

Photopletysmography (volume-clamp method – Prof. Peňáz)

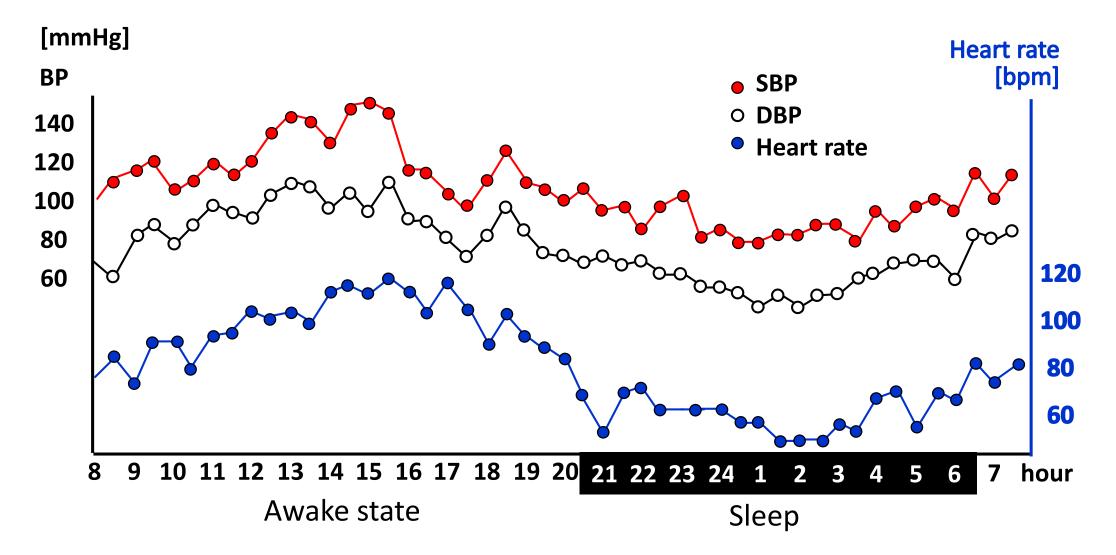
Laminar / turbulent flow, Korotkow sound




Laminar flow Re < 2000 Turbulent flow Re > 3000

Reynold's number Re: probability of turbulent flow

v: velocity of blood flow


S: area of cross-section of artery $(\pi \cdot r^2)$ ρ : density of blood η : viscosity of blood (increase viscosity in case of anaemia/ erythrocytopenia) Brachial a.

24-hours monitoring of BP

Decrease of BP (10 - 15%) at night

Rules for BP measurement

- Examined person is sitting for a few minutes before the measurement
- Only validated apparatus must be used
- Perform at least two measurements in the course of 1 2 minutes
- Use cuff of standard size (12 13 cm width and 35 cm long)
- Smaller or bigger cuffs must be available for patients with smaller or bigger size of arm
- Cuff must be always at the level of heart of examined person
- Pressure in the cuff must be decreased slowly (2 mmHg/s)

Methods	Benefits	Disadvantages	BP value
Auscultatory	 Accurate estimate of SBP/DBP Simple, No electric supply is required 	 Subjective, for accurate measurement practices is required Accurate cuff is required 	SBP + DBP
Oscillometric	 Accurate estimate of MBP Automatic, fast Low cost of device, good for measurements at home 	 DBP/SBP is calculated Inaccurate in case of arrhythmias 	MBP
24 – hours monitoring	 Monitoring during whole day Exclusion of white coat hypertension 	 Disturbance by cuff inflation (especially at night) 	
Photoplethys- mography	Continual BP recordAnalysis of BP variability	Measurement on fingerCost of device	Continually

Physiological values of BP, hypertension

	BP	SBP [mmHg]	DBP [mmHg]
Normal	Optimal	<120	<80
	Normal	120 – 129	80 - 84
	Higher normal	130 - 139	85 – 90
oertensi	1. degree	140 – 159	90 – 99
	2. degree	160 – 179	100 - 109
	3. degree	> 180	> 110

Changes of BP during and after physical activity

- Increased of BP depends on character of physical activity
- Blood is distributed in the body according to metabolic needs re-distribution during physical activity
- Increased CO \rightarrow increased SBP
- Vasodilatation in working muscle, vasoconstriction in skin, GIT
- \rightarrow Stability or light change of DBP during rhythmic work
- → Increase of DBP during and after isometric muscle contraction (e.g. weightlifting)

Vasoconstriction in skin is temporary – vasodilatation in skin due to heat production as a thermoregulatory mechanism

- After the physical activity BP decreases on/slightly under the previous level, blood flow through skeletal muscles may remain increased.
- Time required for recovery depends on parasympathetic activity (it is possible to improve it by training)