Fyziologie smyslů

Receptory

Receptory

podnět
biologický signál

Receptory

\rightarrow membránové receptory (z vněǰ̌ího prostředí)
\rightarrow cytosolové receptory (pronikne-li signál membránou)
\rightarrow jaderné receptory (pronikne-li signál membránou)

Receptory

Receptory

Receptory


```
TIME (ms)
```


Receptory

$+40$

Receptory

Receptory

Receptory

Receptorové buňky

v membráně specializované bílkoviny
\rightarrow funkční jednotka $=$ SENZOR

Přídatné struktury receptorů

= optický systém oka
= orgány středního a vnitřního ucha
$=$ hlenová vrstva na povrchu čichového epitelu

Přídatné struktury

funkce

\rightarrow ochranná
\rightarrow transformace/koncentrace signálu
\rightarrow převod do/k/na citlivé části receptorových buněk

Receptory

Receptory

Receptory

Receptory

Receptory

Receptory

Receptory

Receptory

Receptory

zmèns prostupnosti \Rightarrow membrànového

Receptory

Receptory

zmèna prostupnosti membránového iontorych kanalli.

Receptory

Podnět

intenzita $=$ amplituda akčního potenciálu

- relativně nižší při vyšší intenzitě podnětu
- dlouhodobé působení = ADAPTACE
- modalita podnětu $=$ výběr specifických receptorů + specifické dostředivé neurony

Akční potenciál podnětu

receptorová buňka (čichové buňky, taktilní buňky)
\rightarrow dosažení prahové hodnoty
\rightarrow synaptický přenos
\rightarrow mediátor
\rightarrow následný neuron

Signál

nervové dráhy

zpracování informace + přepojení do jiných systémů (oko a okohybné svaly)
 RECEPTOR

nespecifické senzorické dráhy
mozková kůra

Senzorické vjemy

$=$ vstup aferentní informace do vědomí

Není odrazem podnětu ale je výsledkem procesu výběru informací!

Receptory

FOTORECEPTORY

- detekce světelného vInění

MECHANORECEPTORY

- detekce zvukových vln a tlaku na kůži a vnitřním uchu

CHEMORECEPTORY

- detekce molekul v jídle, ve vnějším a vnitřním prostředí

Fotoreceptory

buňky $=$ tyčinky a čípky

$\rightarrow 3$ části:

zevní segment
(vrstvy/disky plazmatické membrány se světlocitnou látkou)
vnitřní segment
(buněčné organely)
synaptické zakončení
(spojení s dalšími buňkami sítnice)

Fotoreceptory - rodopsin

- světlocitná látka
- bílkovina OPSIN + izomer vit. A: 11-cis retinal
. tyčinky - 1 druh opsinu $=$ intenzita světla
. čípky - 3 druhy opsinu - citlivost k různým vlnovým délkám (= vnímání barev)

Fotoreceptory

TMA - membrána DEpolarizována $(=-40 \mathrm{mV})$
\rightarrow otevřené Na^{+}kanály díky cGMP
\rightarrow tok K^{+}vnitřním segmentem
\rightarrow presynaptický útvar - aktivace Ca^{2+} kanálů
\rightarrow rodopsin (-cis forma) \rightarrow světlo \rightarrow-trans forma \rightarrow
G protein \rightarrow aktivace cGMP-fosfodiesterázy \rightarrow

Fotoreceptory

\rightarrow štěpení \rightarrow uzavření Na^{+}kanálů \rightarrow
HYPERpolarizace \rightarrow snizzení výdeje transmiteru \rightarrow
změna membránového potenciálu další buňky
zrakové dráhy \rightarrow-trans forma \rightarrow rodopsinkináza \rightarrow
konverze na -cis formu \rightarrow vazba na opsin

Mechanoreceptory

- převod mechanických podnětů na bioenergetický signál
- nejčastější

\rightarrow kůže (tlak)
\rightarrow svaly, šlachy, klouby (hluboké čití)
\rightarrow močový měchýř (tlak)
+ receptory sluchu, polohy hlavy

Mechanoreceptory

$=$ mechanicky řízené iontové kanály
\rightarrow záklopky připojeny vláknem k cytoskelety
\rightarrow deformace buňky \rightarrow vlákno \rightarrow otevření/uzavření iontového kanálu

Mechanoreceptory
 Sluchové a vestibulární ústrojí

- buňky se STEREOCILIEMI \rightarrow napojeny na iontové kanály
\rightarrow DEpolarizace - HYPERpolarizace membrány
\rightarrow vypuštění transmiterů $=$ přenos signálu

Chemoreceptory

- chuť, čich, složení vnitřního prostředí
- odpověd' na přítomnost látek v okolí
(specifické receptory v membráně)
\rightarrow nervový signál - specializovaný senzorický
receptor

Chemoreceptory

chemická látka \rightarrow senzor \rightarrow druhý posel
\rightarrow změna prostupnosti iontových kanálů na membráně
\rightarrow receptorový potenciál (DEpolarizace - HYPERpolarizace)
\rightarrow presynaptický oddíl buňky
\rightarrow změna výdeje mediátoru

Chemoreceptory

druhý posel
\rightarrow zesílení signálu
\rightarrow odlišení částí membrány
\rightarrow místo vazby molekuly
\rightarrow generování změn potenciálu

Receptorový potenciál NENÍ ovlivněn změnami iontového složení

Termoreceptory

- pomalá adaptace
\rightarrow termocitlivé iontové kanály pro Ca^{2+}
\rightarrow vznik receptorového potenciálu
- lepší lokalizace při působení i tlakového podnětu

Termoreceptory

Dva druhy

- chladové - aktivita při $23-28^{\circ} \mathrm{C}$
- tepelné - aktivita při $38-43{ }^{\circ} \mathrm{C}$
- rychlá změna - rozezná $0,1^{\circ} \mathrm{C}$
- pomalá - větší rozdíl teplot a víc receptorů
- pod $10{ }^{\circ} \mathrm{C}=$ zástava tvorby a šîření vzruchů
\rightarrow znecitlivění

Senzorické vjemy

Chut

- chemoreceptory
- jazyk, patro, hltan, horní část jícnu
- chutové pohárky
- buňky žijí jen cca 2 týdny
- receptorové buňky
- podpůrné buňky

Chut'

Chut

Chut

pouze u látek rozpustných ve vodě

- sladká - molekuly na bílkovinné senzory membrány
- slaná - prostup Na^{+}do buněk
- kyselá a hořká - prostup H^{+}iontů membránou
dlouhodobé působení podnětu \rightarrow adaptace

Chut

- aferentní vlákna chutových pohárků = výběžky
VII., IX. a X. hlavového nervu
\rightarrow chutová centra mozkového kmene
- projekce i do talamu a mozkové kůry
+ retikulární formace mozkového kmene a
lymbický systém (hypotalamus) = emoce

Chut

- aferentní vlákna chutových pohárků = výběžky
VII., IX. a X. hlavového nervu
\rightarrow VII. $=n$. facialis (lícní nerv)
$\rightarrow \mathrm{IX} .=n$. glossopharingeus (jazykohltanový nerv)
$\rightarrow X .=n$. vagus (bloudivý nerv)

Chut

Chut

GUSTATORY CORTEX
 structure responsible for
 the perception of taste

Čich

- nejvyšší senzorický vstup (potrava, rozmnožování)
- čichový epitel - velmi malá plocha
$=$ receptorové buňky (bipolární neuron schopný regenerace)
+ podpůrné buňky
+ hlenové buňky

Čich

Čich

Čich

čichové dráhy z bulbus olfactorius
\rightarrow různé oddíly mozku

- korová projekce + projekce do lymbického systému
$=$ emoční zabarvení čichových vjemů

Čich

Čich

FRONTAL CORTEX

Čich

Zrak

- vnímání
- elektromagnetického záření 400-750 nm
- jasu
- kontrastu (rozdíl barevného odstínu sousedních ploch)
- vznik vjemu $=$ podráždění receptorů sítnice
- obraz na sítnici - převrácený, zmenšený

Zrak

- optický aparát oka
- čočka
- duhovka, zornice
- sítnice
- přídatné orgány oka
- oční víčka
- slzné žlázy
- okohybné svaly, ochranný tukový polštár

Zrak

Zrak

Zrak

Zrak

ČOČKA

- výživa difuzně z komorové tekutiny
\rightarrow centrální část stárne (ztráta pružnosti)
\rightarrow vznik PRESBYOPIE (brýle „na blízko")
- schopnost akomodace (úprava lomivosti)
- ciliární svaly (stah řízen parasympatikem)

Zrak

ČOČKA - vady

- myopie = obraz vzniká před sítnicé
- brýle s rozptylkou (čočka)
- hypermetropye = obraz vzniká za sítnicé
- brýle se spojkou
- katarakta = šedý zákal, ztráta průhlednosti čočky

Zrak

DUHOVKA

- pigment $=$ neprostupná pro světlo ZORNICE
- paprsčitý a kruhovitý sval = změna velikosti
- spánek - zúžená, bezvědomí - rozšǐřená

Zrak

SÍTNICE

- vnitřní vrstva
- tyčinky, čípky
- bipolární neurony
- gangliové buňky

Zrak

SÍTNICE

- čípky
-v centrálních partiích sítnice
- 3 druhy - barevné vidění
- tyčinky
- citlivěǰ̌í
- vidění v horších světelných podmínkách

Zrak

zraková dráha

- tyčinky + čípky \rightarrow bipolární neurony
\rightarrow gangliové neurony \rightarrow zrakový nerv
\rightarrow talamus \rightarrow týlní oblast mozkové kůry (+ vlákna do jader mozkového kmene, mozečku, retikulární formace)

Zrak

Zrak

zraková dráha

- axony gangliových buněk - křižení
= chiasma opticum
- každá mozková hemisféra - informace ze stejnolehlé poloviny oka

Zrak

Zrak

corpus geniculatum laterale

Zrak

- čípky
- přímé spojení do vyšších oddílů mozku
- 1 čipek $=1$ bipolární neuron
- tyčinky
- konvergence $=$ neurony své dráhy sdílejí
- \rightarrow sčítání signálu \rightarrow vyšší citlivost

Zrak

Zrak

-

o

Sluch

- nepřetržitě monitoruje okolí i vlastní zvukové projevy
- výška tónu dána frekvencí (jak rychle kmitá)
- síla zvuku dána amplitudou

Sluch

Sluch

zvukové vlny
\rightarrow ušní boltec
\rightarrow zevní zvukovod
\rightarrow membrána bubínku
\rightarrow sluchové kůstky
\rightarrow oválné okénko

Sluch

PINNA or AURICLE
 catches sound waves, and passes them along deeper into the car
 EXTERNAL ACOUSTIC MEATUS

auditory canat

Sluch

EAR DRUM

Sluch

TYMPANIC CAVITY

Sluch

MALEUS
STAPES

Sluch

SUPERIOR OVAL WINDOW

Sluch

Sluch

\rightarrow tekutina ve scala vestibularis
\rightarrow tekutina v ductus cochlearis (scala media)
\rightarrow rozkmitání bazilární membrány*
\rightarrow tekutina ve scala tympani
\rightarrow okrouhlé okénko (= místo vyrovnávání tlakových změn)

Sluch

BASIIAR MEMBRANE
a stiff band of tissue that
runs between the scala
mextla and acala tympant

Sluch

ORGAN OF CORII

Sluch

* vibrace bazilární membrány - posun receptorových vláskových buněk proti tektoriální membráně
\rightarrow pohyb mechanicky řízených iontových kanálů
\rightarrow změna prostupnosti membrány
\rightarrow bazální pól vláskové buňky \rightarrow potenciál
\rightarrow vlákna nervus cochlearis \rightarrow CNS

Sluch

Sluch

nervová vlákna zachovávají ve sluchové dráze prostorovou orientaci
\rightarrow projekce do sluchové kůry (komplexní podnět)
\rightarrow prostorová orientace zvuku

Sluch

sluchový vjem \rightarrow podráždění vláskových buněk Cortiho orgánu chvěním bazilární membrány (vnitřní vláskové buňky spojeny synapsí s axony prvního nervu sluchové dráhy)
\rightarrow stereocilie \rightarrow ohyb \rightarrow cytoskelet spojen
s mechanicky řízenými iontovými kanály
\rightarrow změna permeability membrány
\rightarrow změna membránového potenciálu $\rightarrow \ldots$

Rovnováha

VESTIBULÁRNÍ SYSTÉM

- mechanoreceptory
- vláskové buňky
-v ampulách polokruhovitých kanálků
- ve váčcích otolitového orgánu
- aktivovány
- poloha hlavy
- lineární a úhlové zrychlení

Rovnováha

Polokruhovité kanálky

- 3 na sebe kolmé roviny
- rozšýřeny v ampulu (vláskové receptorové buňky)
- vypIněny endolymfou
- propojeny společným prostorem saculu a utriculu

Rovnováha

Rovnováha

Úhlové zrychlení

- otočení hlavy \rightarrow pohyb stěn kanálku vůči endolymfě
- na začátku opoždění endolymfy
- na konci setrvačnost
- největší pohyb v kanálku s nejpodobnější rovinou pohybu

Rovnováha

Lineární zrychlení a změna polohy vůči gravitaci

- otolitový orgán (saculus, utriculus)
- utriculus - hrizontálně
- saculus - vertikálně, sagitálně
- vláskové buňky
- krystalky uhličitanu vápenatého (otolit)

Rovnováha

buňky utriculu

- gravitační vlivy
- úklon hlavy dopředu, dozadu, ke stranám buňky saculu
- gravitační vlivy
- pohyb nahoru, dolu

Rovnováha

informace
\rightarrow aferentní nervová vlákna
\rightarrow vestibulární jádra mozkového kmene

+ proprioreceptory krku - informace o poloze hlavy vůči krku
\rightarrow porovnání
\rightarrow určení polohy celého těla

Dotek a tlak

- mechanoreceptory
- rychle se adaptující (odpověd' na začátek a konec podnětu) = fázické receptory
- pomalu adaptující (odpovídá trvalou aktivitou)
$=$ tonické receptory
- různé typy - liší se stavbou přídatných struktur
(Meissnerovo tělísko, Merkelův disk, Paciniho tělísko, receptor chlupového folikulu, Ruffiniho tělísko, volná nervová zakončení)

Dotek a tlak

umožňuje vnímat

- jemné/silné tlakové změny
- rozlišit tvrdé/měkké
- určit tvar, vlastnosti povrchu

Bolest

- reakce na podnět, který by mohl zničit tkáň
$=$ obranný reflex
- receptory ve všech tkáních (mozek výjimka)
= zakončení nemyelinizovaných (volná) nervových vláken (A δ a C-vlákna)
- citlivost 1000krát nižší jak u tlakových čidel

Bolest

informace z A δ vláken \rightarrow specifickými drahami
\rightarrow thalamus a somatosenzorická oblast kůry
= ostrá, lokalizvaná, ,,rychlá bolest"

Bolest

Informace z C-vláken - pommalejší
\rightarrow nespecifické dráhy retikulární formace
$=$ tupá, hůře lokalizovatelná bolest \rightarrow emoční motiv k odstranění podnětu

+ lymbický systém - emoce

Bolest

EMOCE

- silný pozitivně emoční náboj - snížení vnímání bolesti
- negativní emoční náboj - zvýšení vnímání bolesti

Bolest

z vnitřních orgánů - špatně lokalizovatelná

- často projekce do kůže
\rightarrow nervová vlákna ze stejného nervového segmentu

Zdroje

- LANGMEIER, Miloš. Zaklady lekařske fyziologie. 1. vyd. Praha: Grada, 2009. ISBN 978-80-247-2526-0.
- SILBERNAGL, Stefan a Agamemnon DESPOPOULOS. Atlas fyziologie člověka: překlad 8. německeho vydani. 4. česke vydani. Přeložil Kateřina JANDOVA, přeložil Miloš LANGMEIER, přeložil Otomar KITTNAR, přeložil Eduard KURIŠČAK, přeložil Pavla MLČKOVA, přeložil Martina NEDBALOVA, přeložil Vladimir RILJAK, přeložil Michal WITTNER. Praha: Grada Publishing, 2016. ISBN 978-80-247-4271-7.
- CrashCourse: Anatomy \& Physiology. In: Youtube [online]. [cit. 2016-10-12]. Dostupne z:
https://www.youtube.com/channel/UCX6b17PVsYBQ0ip5 gyeme-Q

Děkuji za pozornost

