Fyziologie gastrointestinálního traktu

Trávicí soustava

- dutina ústní
- hltan, jícen
- žaludek
- střeva
- žlázy GIT

Převzato. Silverthorn, D. U. Human Physiology – an Integrated Approach. 6th. edition. Pearson Education, Inc. 2012.x

- dutina ústní
 - příjem a rozmělnění potravy
 - štěpení škrobů amylázou
- hltan, jícen
 - posun potravy
 - horní a dolní svěrač

- žaludek
 - hromadění a promíchávání potravy
 - kyselina chlorovodíková
 - žaludeční enzymy
- střeva
 - trávení a vstřebávání živin

- žlázy GIT
 - pankreas (pankreatická šťáva)
 - neutralizace střevního obsahu
 - enzymy štěpící jednotlivé živiny
 - játra (žluč)
 - trávení a absorpce tuků

- sliznice
- podslizniční vazivo
- svalovina
- vnější vrstva

Převzato. Silverthorn, D. U. Human Physiology – an Integrated Approach. 6th. edition. Pearson Education, Inc. 2012.x

- sliznice
 - epitel (sekreční/absorpční)
 - vlastní slizniční vrstva
 - svalová slizniční vrstva

- svalovina
 - příčně pruhovaná (začátek a konec)
 - hladká
 - vnitřní kruhová
 - vnější podélná
 - šikmá (v žaludku)

Inervace GIT

Inervace GIT

paravaskulární nervy

subserózní nervy

mezenterium

submukózní plexus

hluboký svalový plexus

- vnitřní enterický NS
 - myenterická pleteň,
 submukózní pleteň

Převzato. Kittnar, O. a kolektiv. Lékařská fyziologie. 1. vydání. GRADA publishing, 2011.

Obr. 7.34 Anatomická organizace stěny GIT a uložení jednotlivých nervových plexů

Inervace GIT

- vnější sympatikus/parasympatikus
 - aferntní/eferentní nervová vlákna
 - sympatikus: inhibiční vliv
 - parasympatikus: stimulační vliv

FIGURE 17-2

Four processes carried out by the gastrointestinal tract: digestion, secretion, absorption, and motility.

Převzato. Widmaier, E. P., Raff, H., Strang, K. T. Vander's Human Physiology: The Mechanisms of Body Function. 13th Edition. McGraw-Hill Education, 2013.

- rozklad (tuky, cukry, bílkoviny) na základní stavební jednotky (MK, jednoduché cukry, AMK)
- → difuze, či několik transportních systémů
 - anorganické látky rozpuštění a disociace
 - vitamíny specifický mechanismus
- absorpce pomocí enterocytů do krve/lymfy

Enterocyt

- bazální membrána prostupná pro velké molekuly
- krátká životnost (5 dnů)
- mikroklky kryje glykokalyx: obsahuje mukoproteiny → adsorpce enzymů

Enterocyt

Převzato. Silverthorn, D. U. Human Physiology – an Integrated Approach. 6th. edition. Pearson Education, Inc. 2012.x

Enterocyt

- transcelulární transport
 - → luminální membrána
 - \rightarrow cytoplazma
 - → bazolaterální membrána
 - → intersticiální prostor
 - aktivní transport = dodat mtb energii
 - substrátová specifita

- endocytóza
 - = specializovaná molekula + přenašeč
 - → specifický receptor
 - z buňky v intaktním stavu, nebo splynutí s lysozomem a štěpení molekuly
 - nutná energie (nejen pro činnost cytoskeletu)

Jednoduché cukry

- facilitovaný transport (duodenum, jejunum)
- ightarrow vrátnicový oběh ightarrow játra
- glukóza i kotransport s Na⁺ (vytvoření elektrochemického gradientu: NA⁺-K⁺-ATPáza)
- vstřebávání glukózy nezávisí na přítomnosti inzulinu

* Facilitovaný transport

- nutná účast integrálního membránového proteinu (zajistí přestup přes membránu)
- transport látek po elektrochemickém gradientu
- přenašeč umožňuje přestup hydrofilnějších látek pasivním způsobem, bez vynaložení energie (rychlejší přestup, než prostou difuzí)
- saturabilita přenašeče
- možnost inhibice transportu jiným substrátem či inhibitorem s afinitou k přenašeči

Jednoduché cukry

Bílkoviny

- AMK do buňky specifické přenašeče (specifický aktivní transport)
- využití elektochemického gradientu pro Na⁺
- část jako di/tripeptidy sekundární aktivní transport
- bazolaterální membrána propustnější pro AMK
- = uplatnění difuze

Bílkoviny

Speciální bílkoviny

Tuky

- emulgace soli žlučových kyselin a pankreatická lipáza
- \rightarrow mono/diacylglyceroly, MK, fosfolipidy, cholesterol \rightarrow micely
- \rightarrow difuze komponent přes membránu \rightarrow sER
- → lipidy pokryté fosfolipidy (= chylomikrony)
- ightarrow exocytóza ightarrow mízní kapiláry ightarrow do krve

Tuky

CHYLOMICRON

Tuky

- zbylé žlučové kyseliny
- → vstřebání v ileu
- → difuze/aktiví transport do enterocytů
- → krev → portální oběh
- ightarrow játra ightarrow znovu do žluče

Vitamíny

- rozpustné v tucích
 - do micel \rightarrow sdílí jejich osud
 - vit. E napomáhají žlučové kyseliny

Vitamíny

- rozpustné ve vodě
 - proximální část tenkého střeva
 - vyšší koncentrace ve střevě \rightarrow difuze
 - nižší koncentrace \rightarrow aktivní transport (kotransport s Na^+)
 - B_{12} : vazba na vnitřní faktor \rightarrow endocytóza
 - → aktivně přes bazoleterální membránu

Vápník

- vstřebává ve všech oddílech střeva
- Ca^{2+} + specifický protein v luminální membráně \rightarrow translokace do cytoplasmy
- → + cytoplazmatický kalcium-vazný protein
- → aktivní transport **proti** elektrochemickému gradientu
- řízeno vit. D a parathormomnem

Vápník

Převzato z: Kopic, S. and J. P. Geibel (2013). "GASTRIC ACID, CALCIUM ABSORPTION, AND THEIR IMPACT ON BONE HEALTH." <u>Physiological Reviews</u> **93**(1): 189-268.

Železo

- z potravy využije jen malé množství
- železo z hemu využitelnější → facilitovaný transport celého hem-komplexu
- ve střevu vázáno na transferin
- ightarrow specifický receptor ightarrow endocytóza
- → uvolnění a vazba na cytoplazmatický feritin
- → část aktivní transport do krve
- → plazmatická transferin

Železo

- železo s feritinem ightarrow obnova epitelu
- ightarrow do střevního obsahu ightarrow vyloučení
- regulační mechanismus = volná kapacita plazmatického feritinu

Železo

Přezveto z: Shutterstock.com

Železo

Přezveto z: http://www.namrata.co/semester-paper-mechanism-of-iron-absorption-2

- přes stěnu GIT pasivně oběma směry
- hybná síla = osmotický gradient
 - koncentrační spád sodíku (navozen aktivním transportem Na⁺)
- → do bazolaterálního prostoru paracelulární cestou → zvýšení hydrostatického tlaku
- → voda do subepitelových kapilár

- tenké střevo
 - propustnost těsných buněčných spoj relativně veliká
 - osmolalita tekutiny v bazolat. Prostorech vyrovnána tokem vody
 - vstřebaná tekutina izotonická

Převzato z: http://intranet.tdmu.edu.ua

- tlusté střevo
 - propustnost spojů nižší = tok vody do intersticia menší
 - vstřebaná tekutina hypertonická
 - střevní obsah (vůči plazmě) hypotonický

Sekrece

Trávicí šťávy

- buňky žláz ve sliznici/specializované žlázy
- sekreční produkty tvořeny ER
- sekreční granula v apikální části buněk
- uvolnění (exocytóza) po specifickém podnětu

Sliny

- drobné žlázky ve sliznici dutiny ústní
 - permanentní tvorba
- velké párové žlázy
 - příušní, podčelistní, podjazykové
 - příjmu potravy

Sliny

15. Velké slinné žlázy a jejich uložení – glandulae salivatorii majores

Sliny

= voda, Na⁺, K⁺, Ca²⁺, Cl⁻, HCO₃, antibakteriální látky, hlen, amyláza

Přibližně neutrální pH

Žaludeční šťáva

- žlázky sliznice žaludku
- parietální b. = HCl a vnitřní faktor
- hlavní b. = pepsinogen
- mucinózní b. = hlen

Žaludeční šťáva

• HCI

- přenos H⁺ (H⁺-K⁺-ATPázová pumpa)
 membránou kanálků parietálních b.
- na bazolat. straně směna z Cl⁻ za HCO₃
- difuze Cl⁻ do kanálků parietálních b.
- → HCl do žaludku

Žaludeční šťáva

- sekrece
 - fáze
 - cefalická
 - gastrická
 - Intestinální
 - sympatikus inhibice (somatostatin)

Žaludeční šťáva - sekrece

cefalická fáze

- řízena reflexně (parasympatický systém vagových vláken)
 - nepodmíněné reflexy (chuť, čich)
 - podmíněné reflexy (čas, zrak, imaginace)

Žaludeční šťáva - sekrece

gastrická fáze

- reflexně (chemoreceptory sliznice žaludku)
- humorálně
 - gastrin, histamin ze sliznice žaludku

Žaludeční šťáva - sekrece

intestinální fáze

- humorálně
 - sekretin, histamin, cholecystokinin
- -změna hladiny vstřebaných látek (AMK)

Pankreatická šťáva

- = HCO₃-, Na⁺, zymogeny (trypsinogen, chymotrypsinogen, proelastáza, prokarboxypeptidáza), enzymy (amyláza, lipáza, nukleáza)
- → aktivace enteropeptidázou v tenkém střevě
- zahájení sekrece řízeno sekrecí žaludeční šťávy během cefalické fáze

Děkuji za pozornost!