Fyziologie
 gastrointestinálního
 traktu

Morfologie GIT

Morfologie GIT

Morfologie GIT

. dutina ústní

- hltan, jícen
. žaludek
- střeva
- žlázy GIT

Převzato. Silverthorn, D. U. Human Physiology - an Integrated Approach. 6th. edition. Pearson Education, Inc. 2012.x

Morfologie GIT

- dutina ústní
- příjem a rozmělnění potravy
- štěpení škrobů amylázou
- hltan, jícen
- posun potravy
- horní a dolní svěrač

Morfologie GIT

- žaludek
- hromadění a promíchávání potravy
- kyselina chlorovodíková
- žaludeční enzymy
- střeva
- trávení a vstřebávání živin

Morfologie GIT

- žlázy GIT
- pankreas (pankreatická štáva)
- neutralizace střevního obsahu
- enzymy štěpící jednotlivé živiny
- játra (žluč)
- trávení a absorpce tuků

Struktura GIT

Struktura GIT

- sliznice
- podslizniční vazivo
- svalovina
- vnější vrstva

(f) Sectional view of the small intestine

(e) Sectional view of the stomach

Převzato. Silverthorn, D. U. Human Physiology - an Integrated Approach. 6th. edition. Pearson Education, Inc. 2012.x

Struktura GIT

. sliznice

- epitel (sekreční/absorpční)
- vlastní slizniční vrstva
- svalová slizniční vrstva

Struktura GIT

- svalovina
- příčně pruhovaná (začátek a konec)
- hladká
- vnitřní kruhová
- vnější podélná
. šikmá (v žaludku)

Inervace GIT

Inervace GIT

- vnitřní - enterický NS - myenterická pleteň,

Převzato. Kittnar, O. a kolektiv. Lékařská fyziologie. 1. vydání. GRADA publishing, 2011.

Inervace GIT

-vnější - sympatikus/parasympatikus

- aferntní/eferentní nervová vlákna
- sympatikus: inhibiční vliv
- parasympatikus: stimulační vliv

Trávení a vstřebávání

Trávení a vstřebávání

FIGURE 17-2
Four processes carried out by the gastrointestinal tract: digestion, secretion, absorption, and motility.

Převzato. Widmaier, E. P., Raff, H., Strang, K. T. Vander's Human Physiology: The Mechanisms of Body Function. 13th Edition. McGraw-Hill Education, 2013.

Trávení a vstřebávání

- rozklad (tuky, cukry, bílkoviny) na základní stavební jednotky (MK, jednoduché cukry, AMK)
\rightarrow difuze, či několik transportních systémů
- anorganické látky rozpuštění a disociace
- vitamíny - specifický mechanismus
- absorpce pomocí enterocytů do krve/lymfy

Enterocyt

- bazální membrána prostupná pro velké molekuly
- krátká životnost (5 dnů)
- mikroklky kryje glykokalyx: obsahuje mukoproteiny \rightarrow adsorpce enzymů

Enterocyt

Převzato. Silverthorn, D. U. Human Physiology - an Integrated Approach. 6th. edition. Pearson Education, Inc. 2012.x

Enterocyt

Trávení a vstřebávání

- transcelulární transport \rightarrow luminální membrána \rightarrow cytoplazma
\rightarrow bazolaterální membrána \rightarrow intersticiální prostor

- aktivní transport = dodat mtb energii - substrátová specifita

Trávení a vstřebávání

- endocytóza
$=$ specializovaná molekula + přenašeč
\rightarrow specifický receptor
- z buňky v intaktním stavu, nebo splynutí s lysozomem a štěpení molekuly
- nutná energie (nejen pro činnost cytoskeletu)

Trávení a vstřebávání

Jednoduché cukry

- facilitovaný transport (duodenum, jejunum) \rightarrow vrátnicový oběh \rightarrow játra
- glukóza i kotransport s Na^{+}(vytvoření elektrochemického gradientu: $\mathrm{NA}^{+}-\mathrm{K}^{+}$-ATPáza)
- vstřebávání glukózy nezávisí na přítomnosti inzulinu

* Facilitovaný transport

- nutná účast integrálního membránového proteinu (zajistí přestup přes membránu)
- transport látek po elektrochemickém gradientu
- přenašeč umožňuje přestup hydrofilnějších látek pasivním způsobem, bez vynaložení energie (rychlejší přestup, než prostou difuzí)
- saturabilita přenašeče
- možnost inhibice transportu jiným substrátem či inhibitorem s afinitou k přenašeči

Jednoduché cukry

Bílkoviny

- AMK do buňky - specifické přenašeče (specifický aktivní transport)
- využití elektochemického gradientu pro Na^{+}
- část jako di/tripeptidy - sekundární aktivní transport
- bazolaterální membrána propustnější pro AMK
$=$ uplatnění difuze

Bílkoviny

- Speciální bílkoviny

Tuky

- emulgace - soli žlučových kyselin a pankreatická lipáza
\rightarrow mono/diacylglyceroly, MK, fosfolipidy, cholesterol \rightarrow micely
\rightarrow difuze komponent přes membránu \rightarrow sER \rightarrow lipidy pokryté fosfolipidy (= chylomikrony)
\rightarrow exocytóza \rightarrow mízní kapiláry \rightarrow do krve

Tuky

Tuky

- zbylé žlučové kyseliny
\rightarrow vstřebání v ileu
\rightarrow difuze/aktiví transport do enterocytů
\rightarrow krev \rightarrow portální oběh
\rightarrow játra \rightarrow znovu do žluče

Vitamíny

- rozpustné v tucích
- do micel \rightarrow sdílí jejich osud
- vit. E - napomáhají žlučové kyseliny

Vitamíny

- rozpustné ve vodě
- proximální část tenkého střeva
- vyšší koncentrace ve střevě \rightarrow difuze
- nižší koncentrace \rightarrow aktivní transport (kotransport s Na^{+})
- B_{12} : vazba na vnitřní faktor \rightarrow endocytóza
\rightarrow aktivně přes bazoleterální membránu

Vápník

- vstřebává ve všech oddílech střeva
- $\mathrm{Ca}^{2+}+$ specifický protein v luminální membráně \rightarrow translokace do cytoplasmy
$\rightarrow+$ cytoplazmatický kalcium-vazný protein
\rightarrow aktivní transport proti elektrochemickému gradientu
- řízeno vit. D a parathormomnem

Vápník

Převzato z: Kopic, S. and J. P. Geibel (2013). "GASTRIC ACID, CALCIUM ABSORPTION, AND THEIR IMPACT ON BONE HEALTH." Physiological Reviews 93(1): 189-268.

Železo

- z potravy využije jen malé množství
- železo z hemu využitelnější \rightarrow facilitovaný transport celého hem-komplexu
- ve střevu vázáno na transferin
\rightarrow specifický receptor \rightarrow endocytóza
\rightarrow uvolnění a vazba na cytoplazmatický feritin
\rightarrow část aktivní transport do krve
\rightarrow plazmatická transferin

Železo

- železo s feritinem \rightarrow obnova epitelu \rightarrow do střevního obsahu \rightarrow vyloučení
- regulační mechanismus = volná kapacita plazmatického feritinu

Železo

shutterstrsck
Přezveto z: Shutterstock.com

Železo

Přezveto z: http://www.namrata.co/semester-paper-mechanism-of-iron-absorption-2

Voda

- přes stěnu GIT pasivně oběma směry
- hybná síla = osmotický gradient
- koncentrační spád sodíku (navozen aktivním transportem Na^{+})
\rightarrow do bazolaterálního prostoru paracelulární cestou \rightarrow zvýšení hydrostatického tlaku
\rightarrow voda do subepitelových kapilár

Voda

- tenké střevo
- propustnost těsných buněčných spoj relativně veliká
- osmolalita tekutiny v bazolat. Prostorech vyrovnána tokem vody
- vstřebaná tekutina izotonická

Voda

Převzato z: http://intranet.tdmu.edu.ua

Voda

- tlusté střevo
- propustnost spojů nižší = tok vody do intersticia menší
- vstřebaná tekutina hypertonická
- střevní obsah (vůči plazmě) hypotonický

Sekrece

Trávicí štávy

- buňky žláz ve sliznici/specializované žlázy
- sekreční produkty tvořeny ER
- sekreční granula v apikální části buněk
- uvolnění (exocytóza) po specifickém podnětu

Sliny

- drobné žlázky ve sliznici dutiny ústní
- permanentní tvorba
- velké párové žlázy
- příušní, podčelistní, podjazykové
- příjmu potravy

Sliny

15. Velké slinné žlázy a jejich uložení - glandulae salivatorii majores

1 Vývod příušní žlázy Ductus parotideus
2 Žláza příušní přídatná Glandula parotis accesoria
3 Žláza příušní Glandula parotis
4 Žláza podjazyková Glandula sublingualis
5 Jazylkočelistní čára Linea mylohyoidea mandibulae
6 Vývod žlázy podčelistní Ductus glandulae submandibularis
7 Žláza podčelistní Glandula submandibularis

.Převzato z: https://is.muni.cz/do/fsps/e-learning/zaklady_anatomie/zakl_anatomie_II/pages/hlavova_cast.html

Sliny

$=$ voda, $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Cl}^{-}, \mathrm{HCO}_{3}$, antibakteriální látky, hlen, amyláza

Přibližně neutrální pH

Žaludeční štáva

Žaludeční štáva

. HCl

- přenos $\mathrm{H}^{+}\left(\mathrm{H}^{+}-\mathrm{K}^{+}\right.$-ATPázová pumpa) membránou kanálků parietálních b.
- na bazolat. straně směna z Cl- za HCO_{3}
- difuze Cl^{-}do kanálků parietálních b.
$\rightarrow \mathrm{HCl}$ do žaludku

Žaludečńí štáva

. sekrece

- fáze
- cefalická
- gastrická
- Intestinální
- sympatikus inhibice (somatostatin)

Žaludeční štáva - sekrece

cefalická fáze

- řízena reflexně (parasympatický systém vagových vláken)
- nepodmíněné reflexy (chut, čich)
- podmíněné reflexy (čas, zrak, imaginace)

Žaludeční štáva - sekrece

gastrická fáze

- reflexně (chemoreceptory sliznice žaludku)
- humorálně
- gastrin, histamin - ze sliznice žaludku

Žaludeční štáva - sekrece

intestinální fáze

- humorálně
- sekretin, histamin, cholecystokinin
- změna hladiny vstřebaných látek (AMK)

Pankreatická štáva

$=\mathrm{HCO}_{3}{ }^{-}, \mathrm{Na}^{+}$, zymogeny (trypsinogen, chymotrypsinogen, proelastáza, prokarboxypeptidáza), enzymy (amyláza, lipáza, nukleáza)
\rightarrow aktivace enteropeptidázou v tenkém střevě

- zahájení sekrece řízeno sekrecí žaludeční štávy během cefalické fáze

Děkuji za pozornost!

