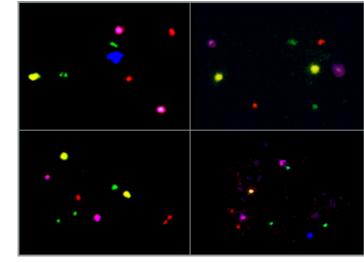
# Pre-implantation Genetic Diagnosis (PGD)

Genetic analysis of a single cell from an eight-cell embryo done in conjunction with in vitro fertilization (IVF) to improve the chances of a "normal" pregnancy.

- Polar body
- Blastomere
- Trophectoderm

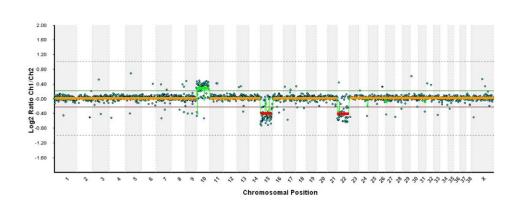


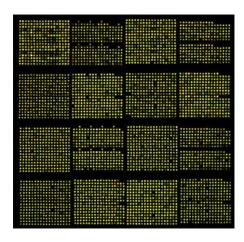
• Remove a single cell from the 6-8-cell embryo using a fine glass needle to puncture the zona pellucida and aspirate the cell


## **FISH**

using fluorescent probes specific for each chromosome. These allow number and size of each chromosome to be checked.

- useful for identifying aneuploidies (incorrect chromosome numbers) and translocations
- procedure destroys the tested cell


 limited number of chromosomes can be checked simultaneously; some abnormalites undetectable


Aneuploidy is the most frequent cause of spontaneous abortions.



## genetic testing (PCR or gene chips)

Array CGH (aCGH)

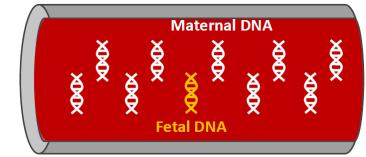




PGD of monogenic diseases

based on indirect diagnostics using STR markers direct diagnostics - sequencing

## Limitations of PCR-based tests:


 Both alleles may not amplify equally, leading to misdiagnosis or inconclusive results

ADO (alelic drop out) – amplification of one alelle under the detection limit. Reasons unknown but influenced by cell lysis, PCR conditions, target DNA for sequencing, PCR product size

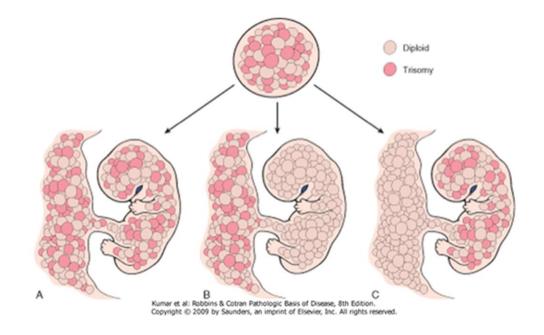
 PCR-based tests only detect disorders at target loci; other mutations may exist elsewhere

### Cell free fetal DNA

- Short segments (<200 base pairs) of fetal DNA circulates in maternal plasma
- Origin is primarily placenta
- Placental cells undergoing apoptosis



- Reliably detected >7 weeks
- Increases throughout pregnancy (10-22 weeks constant)
- Cleared within hours of birth
  - Short half life (16 min), undetectable by 2 hours postpartum


- Both cell-free fetal and cell-free maternal DNA circulate in maternal plasma.
- Cell-free fetal and maternal DNA circulate in maternal plasma as relatively short fragments (150-200 base pairs) and represent the entire genome.
- Fetal DNA comes primarily from the placenta.
- Maternal DNA comes primarily from maternal blood cells.
- Fetal DNA is 5-25% of the total cell-free DNA (~10% on average).

## Cell free DNA Clinical Applications

- Sex Determination
- Single gene disorders paternal origin
- Isoimmunization: noninvasively determine fetal Rh type
- Aneuploidy: detect abnormal ratio of a particular chromosome;
- Does not detect nontargeted aneuploidies

- Next generation sequencing
- Real-time PCR
- Many platforms and methods

- Why cell free fetal DNA fails?
- Confined placental mosaicism



# Pharmacogenetics: From DNA to Drug Treatment

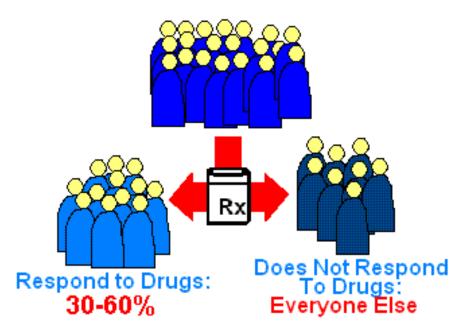
#### • Pharmaco*genomics*

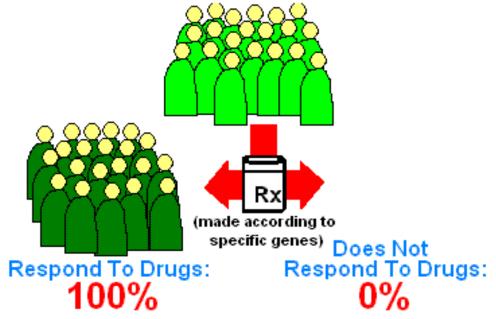
- The science of how genes affect the way people people respond to drugs
- How genes affect...

...the way our body processes drugs (pharmacokinetics)

...the interaction of drugs with receptors (pharmacodynamics)

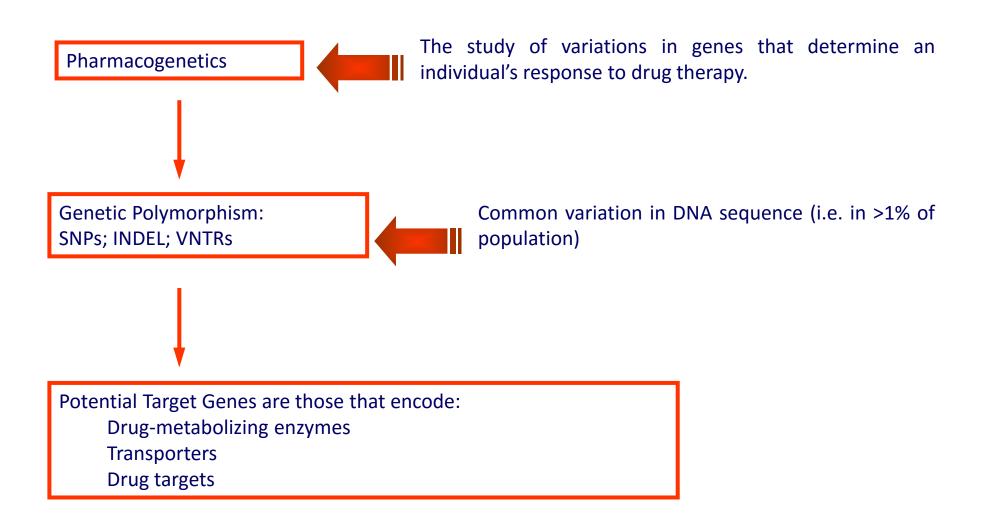
...the treatment efficacy and adverse side effects


#### Pharmacogenetics


- A subset of 'pharmacogenomics'
- The study of how inherited variation affects drug response and metabolism

## Why is this a good approach?

- Drugs can be dangerous
  - Many people have severe adverse reactions to drugs
  - Many people respond to drugs at different doses
  - Many drug treatments are horribly unpleasant, painful
- Drugs are expensive (to take and to make)
  - Ineffective drugs are a waste of money to take
  - Drug development needs to account for response variability
- Genetics provide *a priori* information
  - Genetics don't change (except in cancer)
  - Genetics can point to the *cause* not just the symptom


## TODAY versus TOMORROW



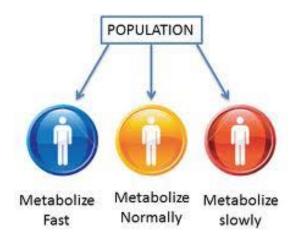


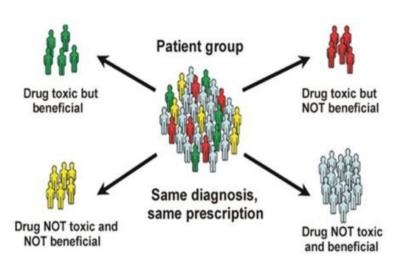
### The Goal of Personalized Medicine

- The Right Dose of
- The Right Drug for
- The Right Indication for
- The Right Patient at
- The Right Time.



## The Technology: Deep Sequencing

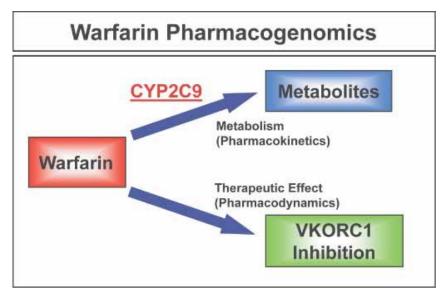

- Captures *every* base pair in the genome (3,000,000,000)
- (Currently) low throughput (slow)
- (Currently) Very expensive (> 10k)
- Captures common, rare, and personal variation
- New and hard to analyze




ATCGAAATGCATGACCTTTGATATGATCGGCTGCAGTCAGC
TTCGAAGTGCATGACTTTTGACATGAGCGGCGGCCCACAGC

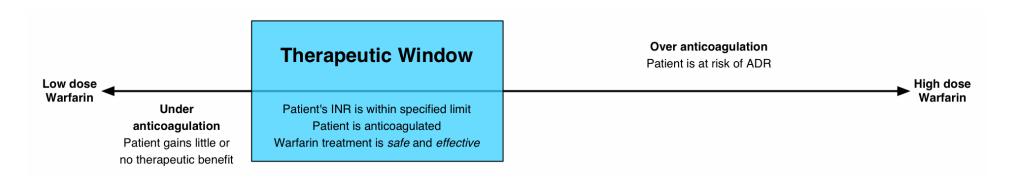
## Back to the drugs...

- The utility of pharmacogenetics:
  - Determining appropriate dosing
  - Avoiding unnecessary toxic treatments
  - Ensuring maximal efficacy
  - Reducing adverse side effects
  - Developing or choosing novel treatments
  - Can also explain variable response to illicit drugs

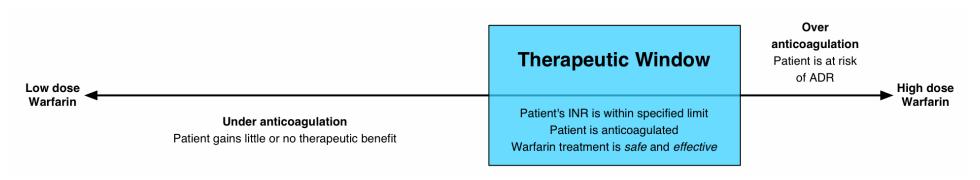





## Warfarin: A dosage story

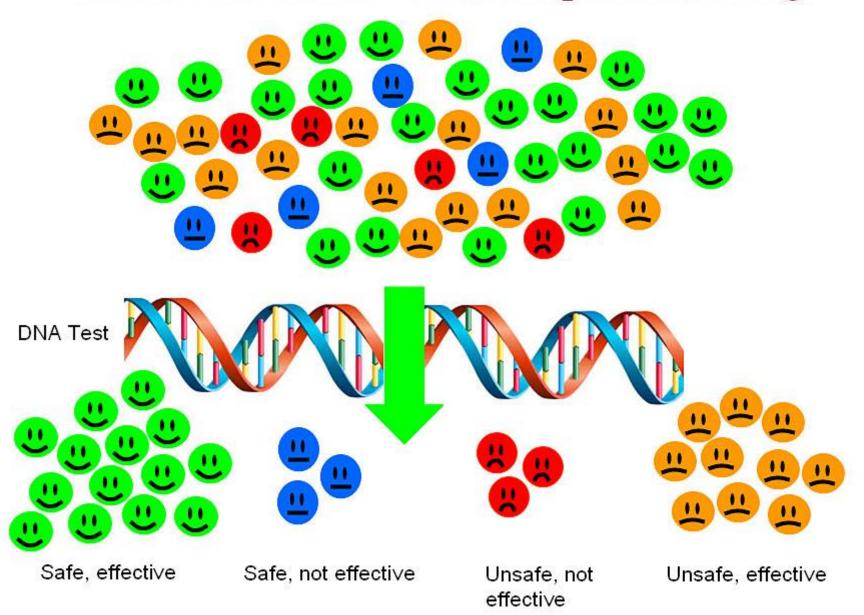

- Most widely used anticoagulant in the world
  - A "blood thinner"
- Prescribed doses vary widely (1-40mg / daily)
- Therapuetic index is very low
  - High risk of bleeding early in treatment
- Two genes involved in metabolism: CYP2C9 and VKORC1





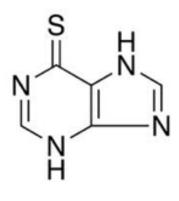



#### Homozygous wild-type CYP2C9 and VKORC1

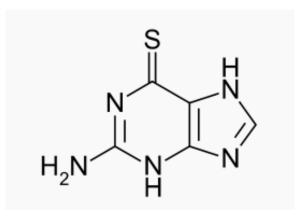



#### Carrier of CYP2C9 mutant allele

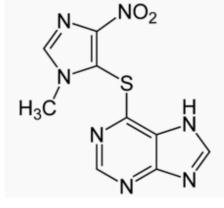



#### Carrier of VKORC1 mutant allele

#### Your DNA Affects Your Response to Drugs

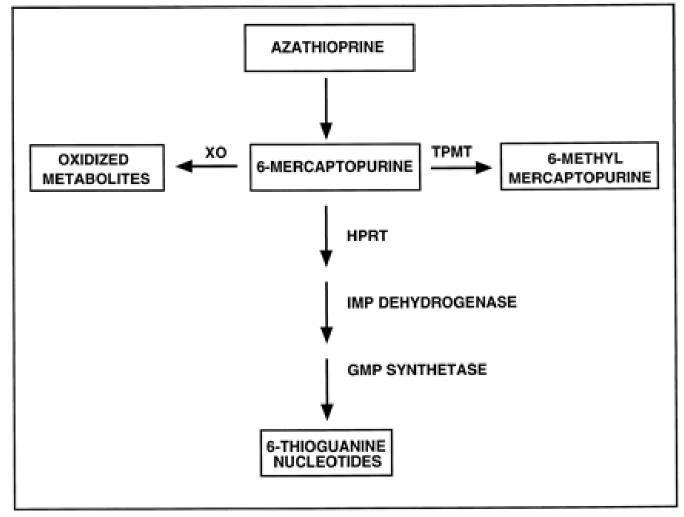



# A Case Study in Pharmacogenetics 6-mercaptopurine, Canioguanine, azathioprine


- Used to treat lymphoblastic leukemia, autoimmune disease, inflammatory bowel disease, after transplant
- Interferes with nucleic acid synthesis
- Therapeutic index limited by myelosuppression (treatment limited by immune suppression side effect)



6-mercaptopurine




6-thioguanine



azathioprine

## Metabolism of 6-MP



#### Pharmacogenetics: A Case Study



Individuals respond differently to the anti-leukemia drug 6-mercaptopurine.



Most people metabolize the drug quickly. Doses need to be high enough to treat leukemia and prevent relapses.



Others metabolize the drug slowly and need lower doses to avoid toxic side effects of the drug.



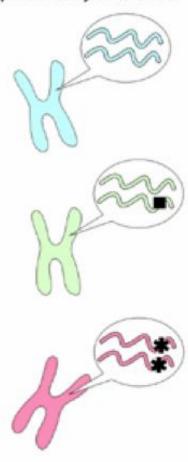
A small portion of people metabolize the drug so poorly that its effects can be fatal.

#### Pharmacogenetics: A Case Study

Ph

Individuals respond differently to the anti-leukemia drug 6-mercaptopurine.




Most people metabolize the drug quickly. Doses need to be high enough to treat leukemia and prevent relapses.



Others metabolize the drug slowly and need lower doses to avoid toxic side effects of the drug.



A small portion of people metabolize the drug so poorly that its effects can be fatal. The diversity in responses is due to variations in the gene for an enzyme called TPMT, or thiopurine methyltransferase.

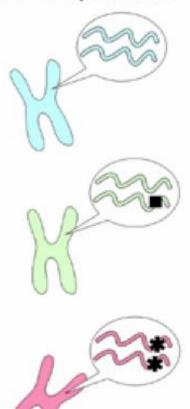


#### Pharmacogenetics: A Case Study

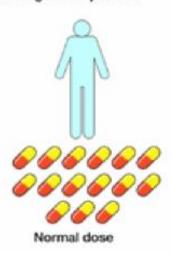
Ph

Individuals respond differently to the anti-leukemia drug 6-mercaptopurine.




Most people metabolize the drug quickly. Doses need to be high enough to treat leukemia and prevent relapses.




Others metabolize the drug slowly and need lower doses to avoid toxic side effects of the drug.



A small portion of people metabolize the drug so poorly that its effects can be fatal. The diversity in responses is due to variations in the gene for an enzyme called TPMT, or thiopurine methyltransferase.



After a simple blood test, individuals can be given doses of medication that are tailored to their genetic profile.





## Second Example: Codeine and Cytochrome P450 CYP2D6

- Codeine is a commonly used opioid
  - Codeine is a prodrug
  - It must be metabolized into morphine for activity
- Cytochrome P450 allele CYP2D6 is the metabolizing enzyme in the liver
- 7% of Caucasians are missing one copy of the Cytochrome P450 CYP2D6 gene
  - codeine does not work effectively in these individuals

## Cytochrome Oxidase P450 Enzymes

- 57 Different active genes
- 17 Different families
- CYP1, CYP2 and CYP3 are primarily involved in drug metabolism.
- CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 are responsible for metabolizing most clinically important drugs

Effect of Metabolic Rate on Drug Dosage

| Drug                                                                                           | Poor Metabolizer Phenotype                                                                  |  |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| Prodrug, needs metabolism<br>to work (eg. codeine is<br>metabolized by CYP 2D6 to<br>morphine) | Poor efficacy<br>Possible accumulation of prodrug                                           |  |
| Active drug, inactivated by metabolism (example is omeprazole)                                 | Good efficacy Accumulation of active drug can produce adverse reactions May need lower dose |  |

| Drug                                                                                           | Ultra-rapid Metabolizer Phenotype                                 |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Prodrug, needs metabolism<br>to work (eg. codeine is<br>metabolized by CYP 2D6 to<br>morphine) | Good efficacy, rapid effect                                       |
| Active drug, inactivated by metabolism (example is omeprazole)                                 | Poor efficacy<br>Need greater dose or slow<br>release formulation |

## FDA Requires Genetic Tests for Certain Therapies

## List of FDA Required or Recommended Biomarker Tests in Drug Labels

|                   |                    |                | User Prevalence<br>(%) |
|-------------------|--------------------|----------------|------------------------|
| Biomarker         | Test <sup>13</sup> | Drug Example   | (n=36.1 million)       |
| CYP2C9            | Recommended        | Warfarin       | 2.0896                 |
| EGFR              | Required           | Cetuximab      | 0.0001                 |
| G6PD deficiency   | Recommended        | Dapsone        | 0.0257                 |
| G6PD deficiency   | Recommended        | Rasburicase    | 0.0000                 |
| HER2/neu          |                    |                |                        |
| overexpression    | Required           | Trastuzumab    | 0.0003                 |
| TPMT variants     | Recommended        | Azathioprine   | 0.1168                 |
| TPMT variants     | Recommended        | Mercaptopurine | 0.0541                 |
| TPMT variants     | Recommended        | Thioguanine    | 0.0012                 |
| UGT1A1 variants   | Recommended        | Irinotecan     | 0.0002                 |
| Urea cycle        |                    |                |                        |
| enzyme deficiency | Recommended        | Valproic acid  | 0.48                   |
| Total             |                    |                | 2.768                  |

CYP = cytochrome P450; EGFR = human epidermal growth factor receptor; G6PD = glucose-6-phosphate dehydrogenase; HER2/neu = human epidermal growth factor receptor 2; TPMT = thiopurine S-methyltransferase.