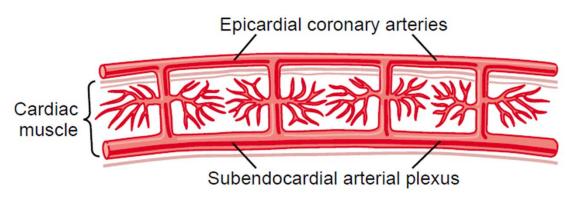
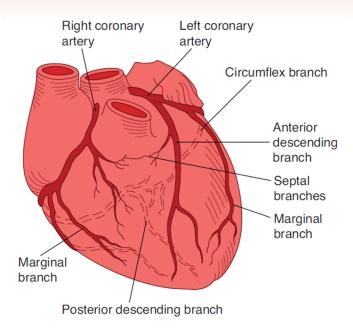
Coronary Circulation Coronary Heart Disease

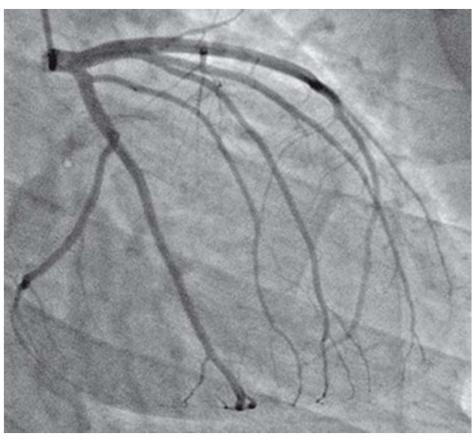
Assoc. Prof. MUDr. Markéta Bébarová, Ph.D.


Department of Physiology, Faculty of Medicine, Masaryk University



This presentation includes only the most important terms and facts. Its content by itself is not a sufficient source of information required to pass the Physiology exam.

- a. cor. sinistra
- · a. cor. dextra
- O₂ diffusion directly from the blood situated in the cardiac cavities
- placing of coronary arteries and capillaries in the cardiac walls; consequences!



Ganong's Review od Medical Physiology, 23rd edition

Guyton and Hall. Textbook of Medical Physiology, 11th edition

Coronary angiography

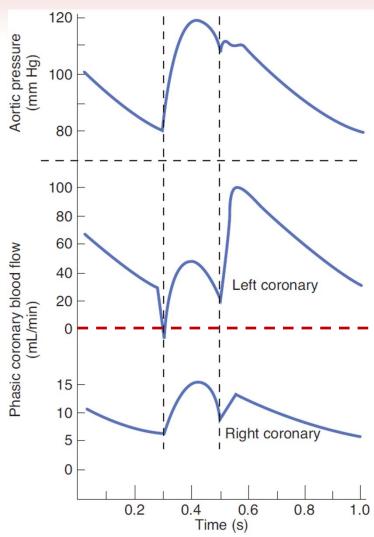

http://pochp.mp.pl/aktualnosci/show.html?id=55102

TABLE 34-4 Pressure in a right ventricles (vent) in systole and diastole.

	Pressure (mm Hg) in			Pressure Differential (mm Hg) between Aorta and	
	Aorta	Left Vent	Right Vent	Left Vent	Right Vent
Systole	120	121	25	-1	95
Diastole	80	0	0	80	80

- intramural vessels
- left vs. right ventricle
- high heart rate

 O₂ extraction is almost maximal already at rest, capillaries are open

 The only possibility how to increase O₂ supply (for example during exercise) is the coronary vasodilation!

Control of coronary blood flow

1) reduction/interruption of the blood flow or increased demands

hyperaemia (reactive or active) based on the metabolic vasodilation

Control of coronary blood flow

- 2) the neural regulation of the vessel diameter secondary impact
 - a) indirect effects
 - b) direct effects
- (mostly opposite)

Control of coronary blood flow

- 2) the neural regulation of the vessel diameter secondary impact
 - a) indirect effects

```
sympathetic system (NE, E)
```

 \uparrow HR + contractility \rightarrow rate of cardiac metabolism \rightarrow increased O_2 consumption \rightarrow activation of local vasodilating mechanisms

parasympathetic system (ACH)

opposite changes → vasoconstriction

Control of coronary blood flow

- 2) the neural regulation of the vessel diameter secondary impact
 - a) indirect effects

epicardial vessels – mostly α -rec. \rightarrow vasoconstriction intramural vessels – mostly β -rec. \rightarrow vasodilation

parasympathetic system (ACH)

vasodilation, but not significant (only few fibers)

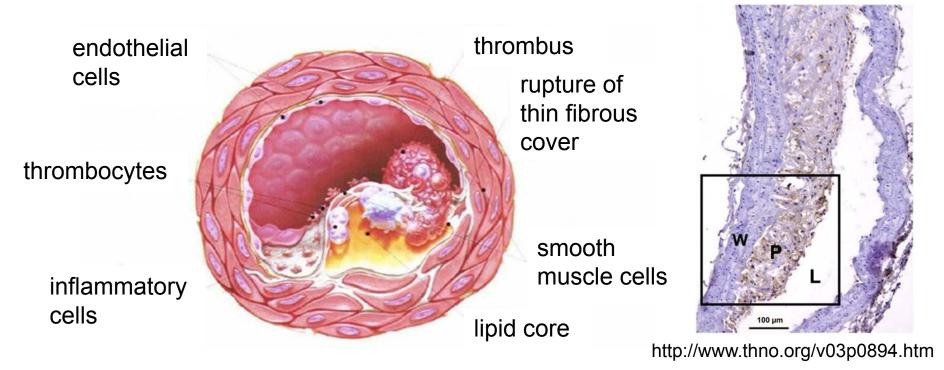
Control of coronary blood flow

- 2) the neural regulation of the vessel diameter secondary impact
 - a) indirect effects
 - b) direct effects

Whenever the direct effects alter the coronary blood flow in the wrong direction, the metabolic control overrides them within seconds!

Coronary Reserve

- ability of coronary vessels to adapt blood flow to the actual cardiac work (ergometry)
- the maximal blood flow / the resting blood flow
- reduction of the coronary reserve:
 - relative coronary insufficiency
 - absolute coronary insufficiency (~ coronary heart disease)

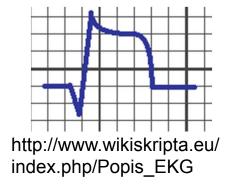

Reduced coronary reserve is a limiting factor of the cardiac output, thus, also of the effort of organism!

- = ischemic heart disease, coronary artery disease
- the most often cardiac disease in Western culture
- about 1/3 of all deaths
- vs. myocardial ischemia

 pathogenesis: atherosclerotic process of one or more branches of the coronary circulation

- symptoms:
 - pain behind the sternum (angina pectoris)
 - changes of ST segment and T wave on ECG;
 character of the changes

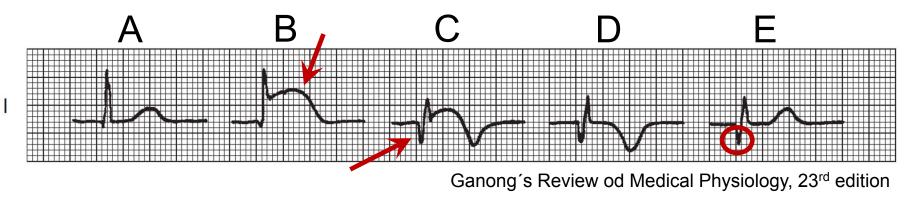
Symptoms are usually provoked by physical exertion, cold, rapid increase of the blood pressure, etc.



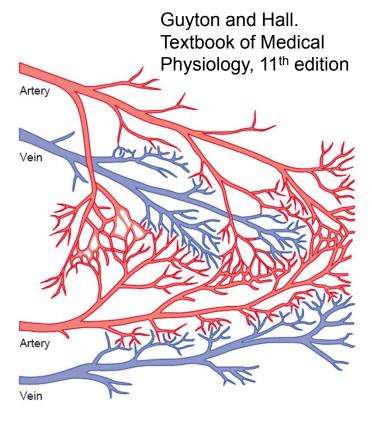
Myocardial infarction

= sudden closure of a coronary branch, usually by a thrombus originating on the strength of a rupture of the atherosclerotic plate, changes are irreversible

symptoms:

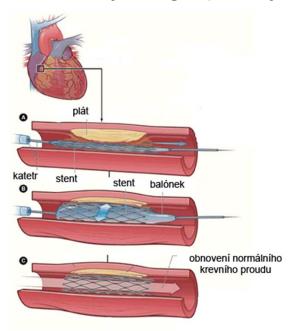

- severe unremitting pain behind sternum
- heart failure (in the case of a bigger extent)
- on ECG: ST elevation followed by T wave without any decrease to the isoelectric line (the Pardee's sign)

 healing by a scar (deep Q wave)

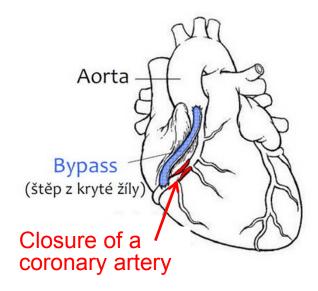

Myocardial infarction

- A. Physiological tracing in lead I
- **B.** Myocardial infarction acute phase hours from infarction.
- C. Many hours till days from infarction.
- D. Late pattern many days till weeks from infarction.
- E. Very late pattern months till years from infarction.

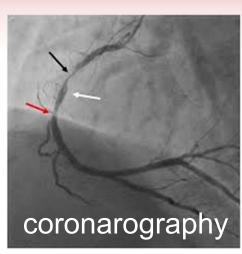
The degree of damage of the heart muscle is determined to a great extent by the degree of collateral circulation!



- Treatment with drugs
 - Vasodilatory drugs
 - Beta-blockers


Surgical treatment

Coronary Angioplasty



http://www.ikem.cz/www?docid= 1005912

Aortic-Coronary Bypass

http://www.sedmstatecnych.cz/clanek/opravene-srdce-po-trech-letech/

