BASIC TERMINOLOGY. DRUG CLASSIFICATION. MECHANISMS OF DRUG EFFECTS. BASICS OF PHARMACOKINETICS.

JANA RUDÁ JKUCER@MED.MUNI.CZ

INTRODUCTION

PHARMACOLOGY

THE SCIENCE THAT STUDIES THE INTERACTION (I.E.
 MUTUAL EFFECTS) BETWEEN A DRUG AND THE
 BIOLOGICAL SYSTEM (FROM THE MOLECULAR LEVEL TO
 THE FULL ORGANISM LEVEL)

MAIN SUB-DISCIPLINES OF PHARMACOLOGY

 PHARMACOKINETICS — WHAT THE BODY DOES WITH THE DRUG

• PHARMACODYNAMICS — MECHANISMS OF EFFECTS

THERAPY

- PSYCHOTHERAPY
- PHYSIOTHERAPY
- SURGERY
- PHARMACOTHERAPY
 - CAUSAL(ATB)
 - Substitution (Insulin, T4)
 - SYMPTOMATIC (ANALGESICS, ANTIPYRETICS)
 - PATHOGENETIC (NSAIDs, ANTIPARKINSONICS, ANTIDEPRESSANTS, ...)
- PLACEBO

CLASSIFICATION OF PHARMACEUTICALS

 PHARMACEUTICALS (= PHARMACEUTICAL DRUGS, ACTIVE SUBSTANCES) are any substances the effects (physical or chemical) of which cause positive changes in biological functions in the organism

ORIGIN:

HUMAN, ANIMAL, HERBAL, CHEMICAL

- AUXILIARY SUBSTANCES ARE NECESSARY FOR THE FORMULATION
- MEDICINAL PRODUCTS = ACTIVE AND AUXILIARY SUBSTANCES
 WHICH ARE MODIFIED INTO A SPECIFIC DOSAGE FORM

PRODRUGS

- PHARMACOLOGICALLY INACTIVE SUBSTANCE FROM WHICH A PHARMACOLOGICALLY ACTIVE METABOLITE ARISES ONCE IN THE BODY
- · LEVODOPA -) DOPAMIN
- VALACIKLOVIR -) ACIKLOVIR
- BROMHEXIN -) AMBROXOL

TERMINOLOGY OF PHARMACEUTICALS

- CHEMICAL NAME
 - 2-ACETOXYBENZOIC ACID
- GENERIC MANE
 - ACETYLSALICYLIC ACID
- INTERNATIONAL NON-PROPRIETARY NAME (INN)
 - ACIDUM ACETYLSALICYLICUM
- PHARMACOPOEIAL NAME
 - ACIDUM ACETYLSALICYLICUM
- TRADE OR CORPORATE NAME
 - ACYLPYRIN[®], ASPIRIN [®]

BASICS OF PHARMACODYNAMICS

MECHANISMS OF DRUG EFFECT

- SPECIFIC
 - RECEPTOR MEDIATED
 - ION CHANNEL
 - G-PROTEIN COUPLED
 - COUPLED WITH ENZYME AKTIVITY
 - INTRACELULAR RECEPTORS REGULATING GENE EXPRESSION
 - NON-RECEPTOR MEDIATED (SPECIFIC INTERACTION WITH OTHER MACROMOLECULES IN THE BODY)
- NON-SPECIFIC

RECEPTOR MEDIATED MECHANISMS

 RECEPTORS = PROTEINS WHOSE PHYSIOLOGICAL ROLE CONSISTS IN SIGNAL TRANSFER TO THE CELL FOLLOWING THEIR ACTIVATION BY AN ENDOGENOUS MOLECULE (NEUROTRANSMITTER, HORMONE).

• **LIGANDS** = SUBSTANCES THAT CAN BIND TO A RECEPTOR.

AFFINITY

 WILLINGNESS OF THE SUBSTANCE TO BIND TO THE GIVEN RECEPTOR TYPE

INTRINSIC ACTIVITY (EFFICACY)

- ABILITY OF THE LIGAND TO ACTIVATE THE RECEPTOR = TO CAUSE SIGNAL TRANSFER BY THE RECEPTOR
- REACHES VALUES OF 0 1, i.e. 1 = 100%OF EFFECT

TYPES OF RECEPTOR LIGANDS

- AGONIST
 - ACTIVATE RECEPTOR
- ANTAGONIST
 - BLOCK RECEPTOR

FULL AGONIST: INTRINSIC ACTIVITY

1

PARCIAL AGONIST (DUALIST): 0 < INTRINSIC ACTIVITY < 1

ANTAGONIST: INTRINSIC ACTIVITY = 0

Receptor Activation: Full Agonist, Partial Agonist, Antagonist

ANTAGONISM COMPETITIVE **REVERSIBLE** NON-COMPETITIVE **IRREVERSIBLE**

AT THE RECEPTOR LEVEL

AT THE FUNCTION LEVEL

HTTPS://WWW.YOUTUBE.COM/WATCH?V=PQ2ZPNOK6XQ

Antagonism

Competitive

- ✓ ligands compete for the same binding site.
- of antagonist decreases agonist effect and inversely
- ✓ the presence of antagonist incerases the amounts of agonist needed to evoke the effect

Non-competitive

- ✓ allosteric antagonism
- ✓ irreverzible bounds
- of agonist does not interrupt the effect of antagonist

Regulation of receptor sensitivity and counts

Hypersensitivity

✓ incerase of receptor sensitivity/counts after
 chronic anatagonist exposure

Rebound phenomenom

after discontinuation of long-term administered drugs return to its original state or \uparrow intensity of the original condition (hypersensitivity of receptors to endogenous ligands \rightarrow up-regulation)

Example: chronic administration of β blockers

REGULATION OF RECEPTOR SENSITIVITY AND COUNTS

 HYPERSENSITIVITY - INCERASE OF RECEPTOR SENSITIVITY/COUNTS AFTER CHRONIC ANTAGONIST EXPOSURE

• REBOUND PHENOMENON

- AFTER DISCONTINUATION OF LONG-TERM ADMINISTERED DRUGS RETURN TO ITS ORIGINAL STATE OR ↑ INTENSITY OF THE ORIGINAL CONDITION (HYPERSENSITIVITY OF RECEPTORS TO ENDOGENOUS LIGANDS → UP-REGULATION)
- EXAMPLE: CHRONIC ADMINISTRATION OF B BLOCKERS

REGULATION OF RECEPTOR SENSITIVITY AND COUNTS

- DESENSITIZATION REDUCED RECEPTOR
 SENSITIVITY/COUNTS AFTER CHRONIC AGONIST EXPOSURE
- TOLERANCE REDUCED SENSITIVITY TO THE ACTIVE SUBSTANCE, ARISING FROM THE REPEATED ADMINISTRATION OF THE DRUG (DAYS — WEEKS) → DOWN-REGULATION
 - EFFECT REQUIRES INCREASINGLY HIGHER DOSES
 - THE ORIGINAL REACTIVITY RETURNS A CERTAIN PERIOD OF TIME AFTER DISCONTINUATION OF THE DRUG
 - Ex. of tolerance opioids administration

upregulation

RECEPTOR DESENSITIZATION

- TACHYPHYLAXIS ACUTE DRUG ,,TOLERANCE"
 - REDUCED SENSITIVITY TO THE ACTIVE SUBSTANCE EVOLVING QUICKLY (MINUTES) → DISTORTION OF THE SIGNAL CASCADE
 - THE REACTIVITY OF THE ORGANISM RETURNS TO THE ORIGINAL INTENSITY AFTER THE ELIMINATION OF THE SUBSTANCE
 - EX. OF TACHYPHYLAXIS NITRATES ADMINISTRATION

Receptor classification

NICOTINIC RECEPTOR

METABOTROPIC RECEPTORS

- = G-PROTEIN COUPLED RECEPTORS
 - Muscarinic, adrenergic, dopaminergic, GABA-B...

ENZYME-LINKED RECEPTORS

INSULIN RC

ACTIVATION OF
 THYROSINKINASE, ↑ SYNTHESIS
 AND ↓ DEGREDATION OF
 GLYCOGEN

RECEPTORS REGULATING PROTEOSYNTHESIS

- LIPOPHILIC STEROID
 HORMONES
- Glucocorticoids, T_3 , T_4 , VIT. D, RETINOIDY
- EFFECT REQUIRES HOURS-DAYS

HTTPS://WWW.YOUTUBE.COM/WATCH?V=TOB X537KFAI

BASICS OF PHARMACOKINETICS

PHARMACOKINETICS = ADME

= ABSORPTION, DISTRIBUTION, METABOLISM, EXCRETION

- PRIMARY PHARMACOKINETIC PARAMETERS
 - BIOAVALIABILITY
 - VOLUME OF DISTRIBUTION
 - CLEARANCE
 - Elimination halflife

ABSORPTION

PENETRATION OF DISSOLVED DRUG FROM THE SITE
 OF ADMINISTRATION TO BLOOD (SYSTEMIC
 CIRCULATION) — NECESSARY FOR GENERAL EFFECT—
 SYSTEMIC EFFECT

Local effect:

- ON SKIN, MUCOSAS OR VENTRICLES
- ABSORPTION IS UNDESIRABLE POSSIBLE AE
- •IE. LOCAL CORTICOIDS, LOCAL ANESTHETICS

ABSORPTION

RYCHLOST A ROZSAH ABSORPCE

- C_{MAX}- MAX. CONCENTRATION OF DRUG IN PLASMA AFTER SINGLE DOSE
- T_{MAX}- TIME, WHEN DRUG REACH C_{MAX} (SPEED)
- F BIOAVAILABILITY (EXTENT)
 - FRACTION WHICH GETS TO THE BLOODSTREAM
 - EXTRAVASCULAR ADMINISTRATION: 0-100% (RESP. 0-1)
 - INRTAVENOUS: 100% = 1

Oral administration

Effects of different bioavailability (F) on the pharmacokinetics

Presystemic elimination First pass effect

http://icp.org.nz/icp_t6.html

DISTRIBUTION

- PENETRATION OF DRUG FROM BLOOD TO TISSUES, DYNAMIC PROCES WHERE WE ARE INTERESTED IN:
- SPEED OF DISTRIBUTION- DEPENDS ON:
 - BINDINGS
 - MEMBRANE PENETRATION
 - ORGAN PERFUSION
- VOLUME OF DISTRIBUTION VD
 - HYPOTHETIC, THEORETICAL VOLUME
 - RATE BETWEEN AMOUNT OF DRUG IN ORGANISM AND PLASTMATIC CONCENTRATION

ELIMINATION

- BIOTRANSFORMATION METABOLISM
 - BIODEGRADATION
 - BIOACTIVATION (PRODRUG: BROMHEXIN AMBROXOL)

- EXCRETION
 - KIDNEY, LIVER, LUNGS, SKIN, BREASTMILK...

BIOTRANSFORMATION

PHASE | OXIDATIONREDUCTIONHYDROLYSIS

More hydrophilic compounds, sometimes active metabolites

PHASE | CONJUGATION — INACTIVATION (GLUCURONIC ACID)

EXCRETION - CLEARANCE (CL)

CL = ABILITY OF THE ORGANISM TO EXCRETE THE DRUG

- THE VOLUME OF PLASMA FROM WHICH A SUBSTANCE IS COMPLETELY REMOVED PER UNIT TIME
- TOTAL = RENAL + HEPATAL + LUNG...

ELIMINATION HALF-LIFE (T 1/2)

- = TIME TO ELIMINATE HALF OF THE DRUG FROM THE BLOOD
- DRUG IS CONSIDERED TO BE ELIMINATED AFTER 4-5 HALF-LIVES

http://icp.org.nz/icp_t4.html