2

The regulatory role of nervous system

Cellular base of nervous system

What is nervous system good for?

The regulatory role of nervous system

Unicellular organism

Multicellular organism

The regulatory role of nervous system

Unicellular organism

- One cell has to do everything- lower effectivity
- Total dependence on environment

Multicellular organism

- Functional specialization of particular cells – higher effectivity
- Inner environment homeostasis

The regulatory role of nervous system

Unicellular organism

- One cell has to do everything- lower effectivity
- Total dependence on environment
- High level of stress
- Short life time

Multicellular organism

- Functional specialization of particular cells – higher effectivity
- Inner environment homeostasis
- Lower level of stress
- Longer life time

- Essentials for survival of multicellular organism
 - To maintain homeostatis
 - To coordinate bodily functions

- Essentials for survival of multicellular organism
 - To maintain homeostatis
 - To coordinate bodily functions
- Maintaining homeostasis
 - The composition of inner environment
 - The integrity of organ/ bodily barriers

- Essentials for survival of multicellular organism
 - To maintain homeostatis
 - To coordinate bodily functions
- Maintaining homeostasis
 - The composition of inner environment
 - The integrity of organ/ bodily barriers
- Esseantials for coordination of bodily functions
 - To receive signals from outer and inner environment
 - To process this information
 - To respond in a coordinate manner to these stimuli

- Esseantials for coordination of bodily functions
 - To receive signals from outer and inner environment
 - To process this information
 - To respond in a coordinate manner to these stimuli

- Esseantials for coordination of bodily functions
 - To receive signals from outer and inner environment
 - To process this information
 - To respond in a coordinate manner to these stimuli

- Regulation
 - Nervous
 - Humoral

- Regulation
 - Nervous
 - Humoral

http://biology.about.com/od/anatomy/p/Hypothalamus.htm

Central nervous systém control/influence all the types of regulations

Humoral regulations

- Chemical compounds
- Non-specific channel of conduction (blood stream)
- Target site defined by specific receptor

Nervous regylations

- Neurtransmitters
- Specific channel of conduction
 - Target site defined by infrastructure

Humoral regulations

- Chemical compounds
- Non-specific channel of conduction (blood stream)
- Target site defined by specific receptor
 - Low energetical demands
 - Slow speed
 - Long duration

Nervous regylations

- Neurtransmitters
- Specific channel of conduction
 - Target site defined by infrastructure
 - High energetical demands
 - Fast speed
 - Short duration

Hormonal and nervous regulations

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

http://www.austincc.edu/

Compartmentalization

- Cellular specialization leads to compartmentalization on several levels
 - Tissue level
 - Organ level
 - Organ system level

Compartmentalization

- Cellular specialization leads to compartmentalization on several levels
 - Tissue level
 - Organ level
 - Organ system level
- There are barriers in between compartments
- Properties/content may vary among different compartments

Intracranial compartment

- Brain
- Cerebrospinal fluid
- Blood (intravasculary)
- **Barriers**
 - Meningeal
 - Hematoliquor
 - Hematoencephalic

sinus

space

http://www.corpshumain.ca/en/Cerveau3 en.php

Meningeal and hematoliquor barrier

Adopted from: M.H.Ross and W. Pawlina. Histology: a text and atlas, Lippincott Williams & Wilkins, 2011

- Clear fluid produced by active secretion
- Liquor space
 - lined by ependymal cells
 - ≻ 150-250 ml

- Clear fluidproduced by active secretion
- Liquor space
 - lined by ependymal cells
 150-250 ml
- Production
 - ✓ Plexus choroideus (PCh) -70%
 - ✓ Cell metabolism
 - ✓ Cappilary filtration
 - ➢ 450-750 ml/day
- Resorbtion
 - ✓ Archnoid granulations (AG)

- Content
 - ✓ High levels of Mg⁺ and Na⁺
 - ✓ Low levels of K^+ and Ca^{2+}
 - ✓ Almost no cells (max 5/ml)

- Content
 - ✓ High levels of Mg⁺ and Na⁺
 - ✓ Low levels of K^+ and Ca^{2+}
 - ✓ Almost no cells (max 5/ml)
- Function
 - ✓ Protection
 - ✓ Microenvironment of neurons and glia
 - Metabolic function
 - Immunologic function
 - Transport function and so on

New insight into the production and resorbtion of CSF

- CSF cerebrospinal fluid
 - ISF interstitial fluid
- VRS Virchow Robin space (space between the pia mater and an artery or a vein, but not capillaries)

Ducros A, Biousse V. Headache arising from idiopathic changes in CSF pressure. *The Lancet Neurology*. 2015;14:655–668.

Hematoencephalic barrier

- Highly organised structure
 - Endothelial cells (low permeability thanks to zonlua occludens)
 - Lamina basalis
 - Astrocytes

Hematoencephalic barrier

Junction between Endothelial cells

FSM (basic artwork: wikimedia commons)

Cross section of blood vessel

Longitudinal section of blood vessel

Circumventricular organs

- Rich vascularisation
- Modified hematoencephalic barrier
- Sensors
- Secretion

http://www.neuros.org/index.php?option=com_photos&view=photos&oid=hafizbilal

The circumventricular organs

Intracranial compartment

- Brain
- Cerebrospinal fluid
- Blood (intravasculary)
- Intracranial pressure (ICP)
- Cerebral perfusion pressure (CPP) pressure gradient driving blood flow intracranialy

CPP = MAP - ICP

Mean arterial pressure

Intracranial pressure

Cerebral perfusion pressure

- Neuronal cells
 - Reception, integration and propagation of information
- Neuroglial cells
 - Support for neuronal cells

- Neuronal cells
 - Reception, integration and propagation of information
- Neuroglial cells
 - Support for neuronal cells
- The total amount of neuronal cells 100 billions
- Neruon/glia ratio
 - 1/10 50 (Principles of Neural Science, 4th ed., 2012)
 - 1/1 (Nolte's Human Brain, 7th ed., 2015)

The brain homeostasis is maintained within a narrow range thanks to hematoencephalic barrier and astrocyte activity

The brain homeostasis is maintained within a narrow range thanks to hematoencephalic barrier and astrocyte activity

This allows neuronal cells to live for the entire life of the individual

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune function

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune function
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining

(liquro-encephalic barrier)

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune function
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining

(liquro-encephalic barrier)

Peripheral nervous system

- Satelite cells
 - Support functions in PNS

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune function
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining

(liquro-encephalic barrier)

Peripheral nervous system

- Satelite cells
 - Support functions in PNS
- Schwan cells
 - Myelin sheat

Neuron

http://www.slideshare.net/drpsdeb/presentations

Neuronal classification

Basis for classification	Example	Functional implication	Structure
1. Axonal projection Goes to a distant brain area	Projection neuron or Principal neuron or Golgi type I cell (cortical motor neuron)	Affects different brain areas	Dorsal root ganglion cell
Stays in a local brain area	Intrinsic neuron or Interneuron or Golgi type II cell (cortical inhibitory neuron)	Affects only nearby neurons	Retinal bipolar cell

http://www.slideshare.net/CsillaEgri/presentations

Neuronal classification

Basis for classification	Example	Functional implication	Structure
2. Dendritic pattern Pyramid-shaped spread of dendrites	Pyramidal cell (hippocampal pyramidal neuron)	Large area for receiving synaptic input; determines the pattern of incoming axons that can interact with the cell (i.e., pyramid-shaped)	Pyramidal cell
Radial-shaped spread of dendrites	Stellate cell (cortical stellate cell)	Large area for receiving synaptic input; determines pattern of incoming axons that can interact with the cell (i.e., star-shaped)	Stellate cell

http://www.slideshare.net/CsillaEgri/presentations

Neuronal classification

Basis for classification	Example	Functional implication	Structure
3. Number of processes One process exits the cell body	Unipolar neuron (dorsal root ganglion cell)	Small area for receiving synaptic input: highly specialized function	Unipolar Soma
Two processes exit the cell body	Bipolar neuron (retinal bipolar cell)	Small area for receiving synaptic input: highly specialized function	Bipolar
Many processes exit the cell body	Multipolar neuron (spinal motor neuron)	Large area for receiving synaptic input; determines the pattern of incoming axons that can interact with the cell	Multipolar

Membrane potential

• Due to differences in the concentrations of ions on opposite sides of a cellular membrane

Resting membrane potential of a neuron

http://assassinscreed.ubi.com

- Highly instable state of membrane
- Why? Speed!
- Brain sonsumption

✓ Oxygen - 20% of total body consumption
 ✓ Glucose - 25% of total body consumption

Action potential

- Quick voltage change on the membrane
- Spreads along the axon
- All or nothing principle ۲ Input Dendrites signal Directional flow of information Integration Cell body Nucleus Axon hillock Axon (initial segment) Myelin sheath Presynaptic. Output axon terminal signal Synaptic Synapse cleft Postsynaptic dendrite Postsynaptic neuron Fig. 8-2

http://www.slideshare.net/drpsdeb/presentations

Action potential spreading

- Local currents
- Anterograde

Saltatory conduction

- Myelin sheat
- Nodes of ranvier
- Economy
- Speed of conduction
- Speed of conduction also dependent of nerve fibre diameter
 - the electrical resistance is inversly proportional to area of cross-section

Classification of nerve fibers

- In humans mostly myelinated
- All fibers are myelinated in CNS
- Non-myelinated are evolutionary old ones

