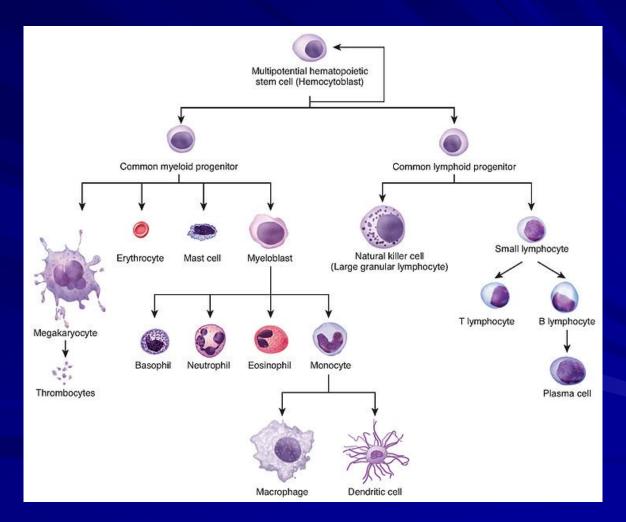
Pathogenesis of multiple myeloma

Doc. RNDr. Sabina Ševčíková, Ph.D. Babak myeloma group ÚPF LF MU

Monoclonal gammopathies

Abnormal proteins in serum or urine

- These proteins produced by a clone of plasma or lymphoid cells
 - MGUS
 - Multiple myeloma
 - Plasma cell leukemia
 - Primary amyloidosis
 - Solitary plasmocytoma
 - Waldenström macroglobulinemia



Babak Myeloma Group Dept. of Pathological Physiology Faculty of Medicine, Masaryk University

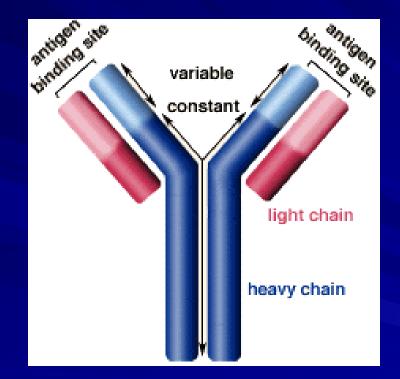
Hematopoesis

Babak Myeloma Group Dept. of Pathological Physiology Faculty of Medicine, Masaryk University

Plasma cells

Cells that produce antibodies
Usually around 5% in the bone marrow
In MM, they are malignant
Produce monoclonal immunoglobulin= paraprotein

Antibodies


To find and destroy foreign objects in the organism
Eliminate pathogen

- IgG, IgA, IgM, IgE and IgD
- □ IgG only one that enters placenta
- IgA produced in mucous membranes, protects entry to body
- IgM produced first after infection body protection in the first few days
- IgE parasites and allergic reactions
- IgD -unclear, co-expressed on surface of mature B cells

Basic structure of immunoglobulin

Precancerosis
In people over 50 - 3-4%
Risk of progression into MM > 1% every year

Multiple myeloma

Second most common hematological malignancy

- 10% of hematological malignancies
- Median age at diagnosis 65
- Incidence 5.7/100 000
- More common in men
- Infiltration of bone marrow by malignant PC
- Osteolytic lesions
- Presence of M-Ig in serum and/or urine

Hájek, 2012 Anderson, 2011

PCL

- Most aggressive monoclonal gammopathy
- Incidence 0.04/100 000
- More than 20% of circulating PC and more than 2x10⁹/L
- Median age at diagnosis 52
- Median survival 1.5 years or shorter

Primary amylodosis

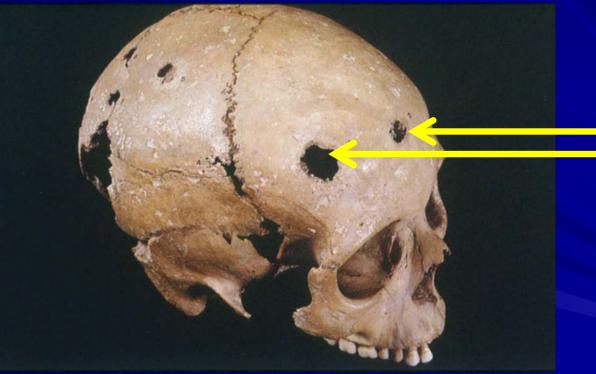
- Amyloid deposits in organs
- Production of abnormal protein filaments
- Rare
- May be present together with MM
- Survival around 40 months

Solitary plasmocytoma

- Solitary lesion of abnormal PC
- Without bone marrow involvement
- Without osteolytic lesions
- Risk of progression into MM 10% in 3 years

Waldenstrom macroglobulinemia

- Affects lymphocytoplasmoid cells (cells with characteristics of both PC and lymphoid cells)
- Production of large amount of IgM
- Very rare
- May progress from IgM MGUS


Multiple myeloma

History of MM

Male skull from the bronze age with MM characteristics

Capasso, 2005

History of MM

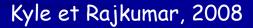
1844 - first documented case - Sarah Newbury (Dr. Solly)

destruction of sternum

fractures of bones

destruction of femur

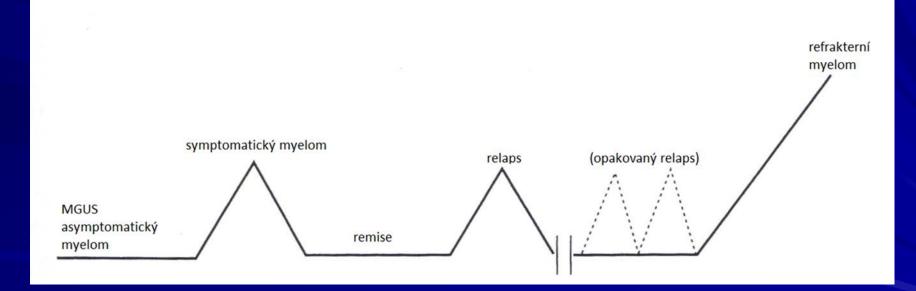
Kyle et Rajkumar, 2008



History of MM

 1845 - presence of proteins in urine of patients (Bence Jones - Bence Jones protein)

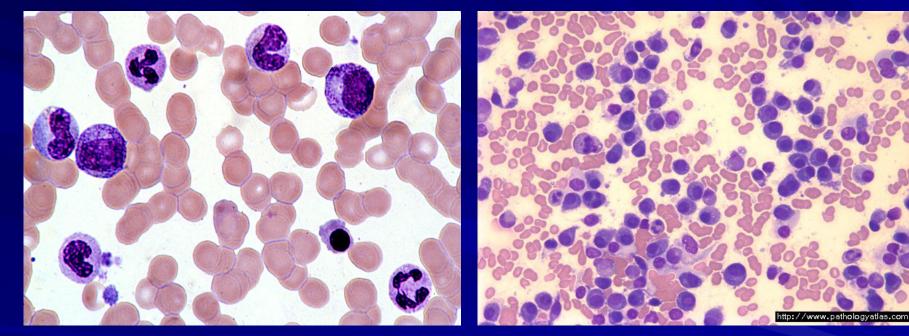
Kahler's disease - Prague physician Otto Kahler



Pathogenesis of MM

Multistep transformation

Špička, 2005



Babak Myeloma Group Dept. of Pathological Physiology Faculty of Medicine, Masaryk University

Healthy bone marrow

MM bone marrow

www.pathologyatlas.com

Multiple myeloma the clinician's viewpoint (doc. Minařík FNOI)

Causes of MM

Unknown but

- Decrease of immunity dependent on age
- Hormonal changes
- Chemicals
- Radiation

 $\square \rightarrow$ changes leading to unstable genome of PC

Manifestation of MM

□ 1) bone marrow:

- ψ ery \rightarrow anemia
- \downarrow leukocytes \rightarrow decrease of immunity
- \downarrow thrombocytes \rightarrow bleeding

Manifestation of MM

2) osteolytic lesions:

- Bone pain
- Weakening of bone structures
- Spontaneous fractures
- Calcium increase in serum

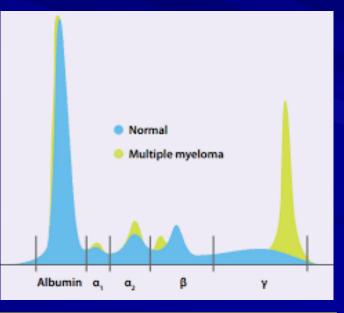
Manifestation of MM

3) Defects in immunoglobulins - paraprotein:

- Hyperviscosity
- Accumulation in blood vessels
- Decrease in proper function of immunity

Diagnosis of MM

- Difficult, not specific (pain, weakness, repeated infections, tiredness - similar to other diseases)
- 1) Number of MM cells in the BM
- 2) Presence of abnormal proteins in blood/urine
- 3) Typical bone changes


Diagnostic methods

Blood and urine test - electrophoresis of proteins
 Sampling and analysis of bone marrow
 Imaging - X-rays, CT, MRI, PET-CT, bone density

Diagnostic methods - general

Various indirect parameters:

- Blood count
- Calcium levels
- Kidney function
- Levels of antibodies
- Liver function
- Bone metabolism

Diagnostic methods- special

- Beta-2-macroglobulin
- Cytogenetics
- FACS
- MM cell proliferation
- Antiangiogenic cytokines
- Free light chain ratio
- Albumin
- Staging

Staging and course of disease

- 3 stages of disease
 I-III level of disease
 A/B kidney function
- Course individual, varies
 From light form of disease to kidney failure, broken vertebrae, immune deficiency, bleeding....

MM treatment

- Orange peel and opioids
- Chemotherapy
- Transplants
- Immunomodulatory drugs
- Proteasome inhibitors

MM prognosis

- Untreated patients survive 14 months
- Standard therapy 3-4 years
- Transplants 6-7 years
- New drugs 5-year survival for more than 80% of pts

Chemotherapy and transplants

- Treatment protocol Junior Senior
 Melphalan
 - Alkylating agent
- Prednisone
 - Glucocorticoid apoptosis of heme cells

Transplants since 1957

- Autologous up to 65, even tandem
- Allogeneic in clinical trials

Hájek, 2012 Anderson, 2011

Treatment options in MM

IMIDsProteasome inhibitors

Treatment options in MM

IMIDsProteasome inhibitors

Thalidomide

- 1953- Chemie Grünenthal
- 1957- distribution
- Sedative
- Morning sickness
- Teratogenic properties
- Only tested on rats

White House Archive

About 10 000 children born - only about 40% survived

□ FDA - Dr. Francis Kelsey

Sedlaříková, 2012

Thalidomide

- 1964 Jason Sheskin leprosy patient
- 1993- Judah Folkman angiogenesis in hematology
- 1994 Bart Barlogie refractory MM, thalidomide
- Clinical study 84 pts, 1/3 of pts response
- 2006 FDA approval
- Unpleasant side effects neuropathy

Sedlaříková, 2012

IMIDs immunomodulatory drugs

Analogues of thalidomide - lenalidomide a pomalidomide
 Pleiotropic effect on MM:

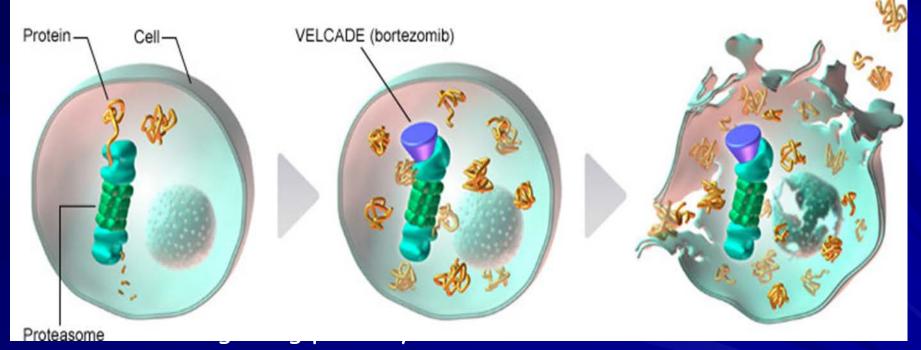
- T-cell co-stimulation
- Antiangiogenic properties
- Anti-inflammatory properties
- Apoptosis and cell cycle progression
- Inhibition of MM and BM interactions

Sedlaříková, 2012

Treatment options in MM

IMIDsProteasome inhibitors

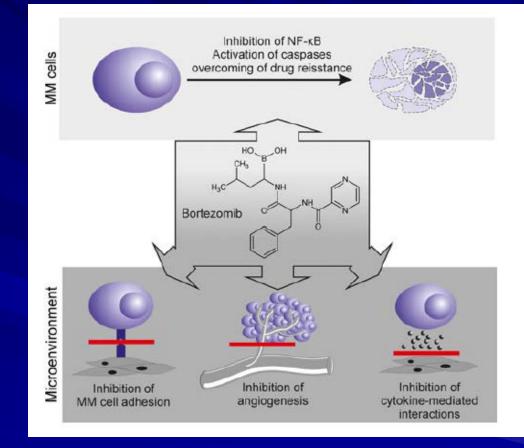
Treatment options in MM


IMIDsProteasome inhibitors

Proteasome inhibitors

Vanueuccoccful treatment of MAA

Kubiczková, 2014

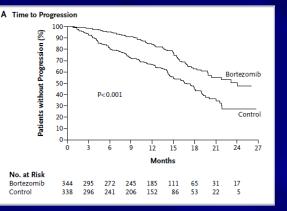


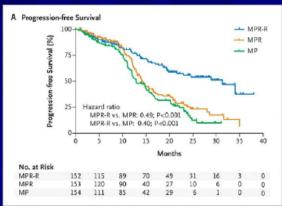
Babak Myeloma Group Dept. of Pathological Physiology Faculty of Medicine, Masaryk University

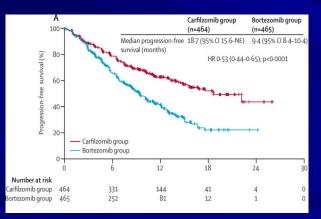
Effect of proteasome inhibitors on BM microenvironment

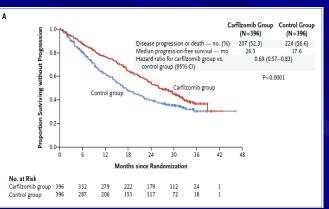
- Cell signaling apoptosis
- Inhibit cell adhesion, angiogenesis, interactions

Kubiczková, 2014




New drugs increase life but do not cure....yet


Thalidomid (Myrin)



Bortezomib (Velcade)

Lenalidomid (Revlimid)

Carfilzomib+Revlimid> Revlimid

Babak Myeloma Group Dept. of Pathological Physiology Faculty of Medicine, Masaryk University

Carfilzomib > Bortezomib

New drugs- new hope

New proteasome inhibitors:

- Carfilzomib (Kyprolis)
- Ixazomib (Ninlaro)

Monoclonal antibodies:

- Daratumumab (Darzalex)
- Elotuzumab (Empliciti)

Perspective for newly diagnosed:

- Early diagnostics \rightarrow early treatment (new criteria 2014)
- New combinations of drugs

What you can buy for 1 year of treatment:

Velcade/ Bortezomib

Revlimid

Imnovid

Babak Myeloma Group Dept. of Pathological Physiology Faculty of Medicine, Masaryk University

Differences in treatment

others

MM

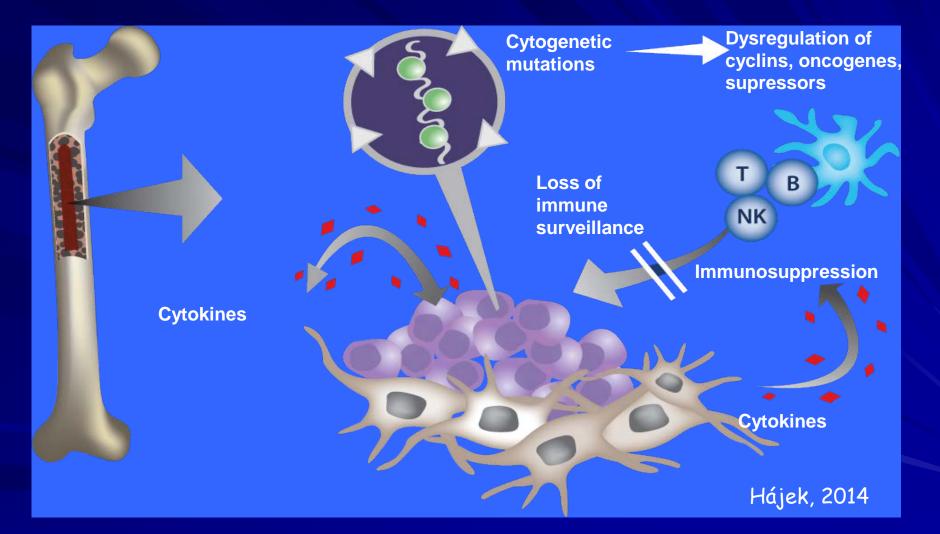
Multiple myeloma the molecular part

MM pathogenesis

Unknown

Genetic predisposition – close relatives – 6 times risk

Pesticides, herbicides, radiation


Mutations in PC
 Changes in BM microenvironment - PC growth

Hájek, 2012 Anderson, 2011

MM pathogenesis

Flowcytometry

- MM diagnosis CD19-CD56+CD38+CD138+
- Risk of progression from MGUS to MM
- Detection of MRD higher PFS and OS in MRD⁻ pts

Hájek, 2012 Anderson, 2011 Říhová, 2013

Cytogenetic aberrations in MM

- Unstable genome deletions, amplifications translocations
- Changes accumulate in time
- Numerical and structural changes of chromosomes
- Aneuploidy of odd chromosomes and translocation of IgH locus

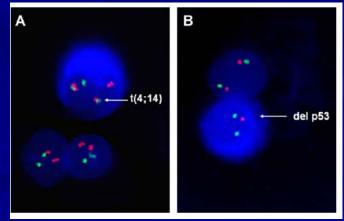
Palumbo, 2013 Anderson, 2011 Kuglík, 2012 Němec, 2012

Numerical aberrations in MM

- Non-hyperdiploid (48 < >74) x hyperdiploid (48-74)
- Hyperdiploid:
 - Trisomies of 3,5,7,9,11,15,19,21 better prognosis
- Non-hyperdiploid:
 - Monosomies of 8,13,14,16,17,22

Structural aberrations

- Translocations of locus 14q32 (IgH)
 Primary changes:
 - +(11;14) 15-20% cyclin D1
 - +(4;14) 10-15% FGFR3/MMSET
 - +(14;16) 2-10% c-MAF
 - t(6;14) 5% cyclin D3
- Secondary changes:
 - Complex karyotypes MYC
 - Deletion or duplication of 1q21
 - Deletion or monosomy of chr 13
 - Deletion of chr 17 deletion of TP53


Palumbo, 2013 Anderson, 2011 Kuglík, 2012 Němec, 2012

FISH

- Most MM cells do not cycle classical cytogenetics basically useless
- i-FISH much better results
- Prognosis t(4;14), t(14;16), t(14;20) and del (17p) bad prognosis

Kuglík, 2012 Němec, 2012 Bešše, 2015

Diagnostics

Bone marrow biopsies
Painful, unethical to repeat too often
New marker? Liquid biopsies?

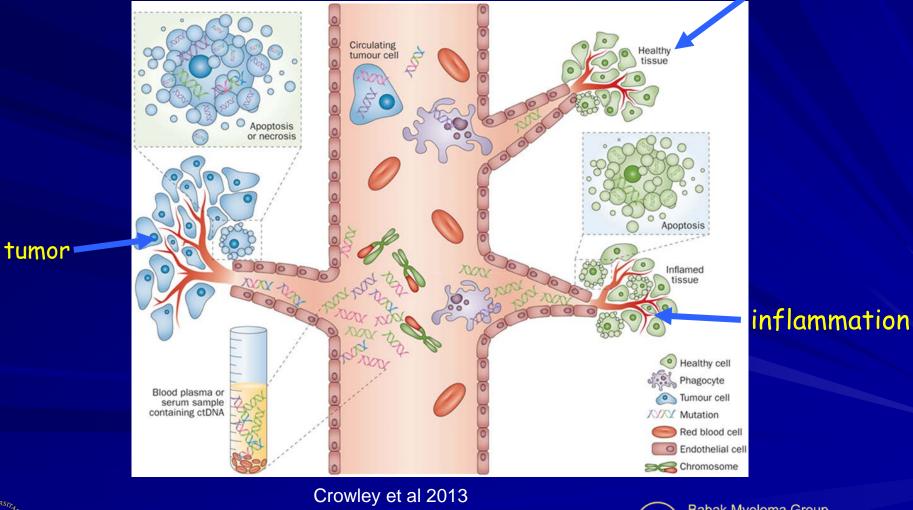
Why liquid biopsies?

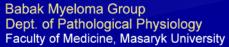
Limitations of classic biopsies

- Invasive
- Painful
- One site of tumor heterogeneity not represented
- In MM presence of subclones in focal lesions

Liquid biopsies

Biopsies of PB

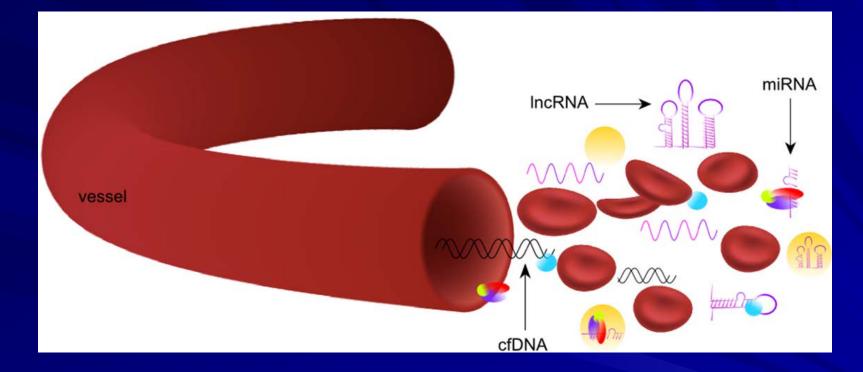

- Detection of circulating tumor cells
- Detection of circulating nucleic acids
- Easier sampling
- Entire heterogeneity of the tumor



Liquid biopsies

healthy tissue

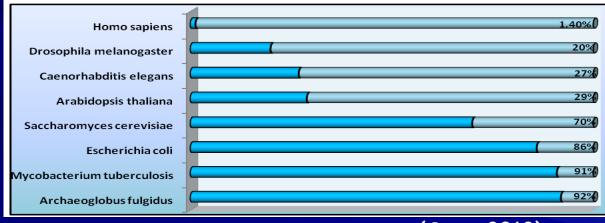
Circulating PC (cPC)


Prognostic marker

- Loss of dependence on BM microenvironment
- Changes of adhesion molecules, chemokines, aberrations
- Faster progression MGUS to MM
- Higher BM infiltration in MM
- Negative prognostic marker in refractory MM
- 5-20% cPC worse survival regardless of age
- > 5% cPC prognosis like PCL

Which molecules?

KO suplementum 2017



Babak Myeloma Group Dept. of Pathological Physiology Faculty of Medicine, Masaryk University

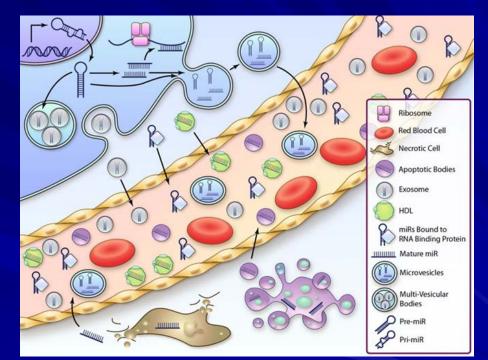
Non-coding RNAs

Less than 1.5% of human genome codes for proteins
More than 90% is transcribed

Most common non coding RNAs : rRNA, tRNA

(Sana, 2012)

Basic division:


Short ncRNA < 200 bp < long ncRNA

Circulating ncRNA

- Body fluids
- Stable and resistant to RNAses
- Easily accessible
- Cell communications
- Diagnostics
- Relapse monitoring
- MRD monitoring

http://circresearch.com/gallery/tag/circulating-mirna/

New markers for MM

MicroRNACell-free DNA

New markers for MM

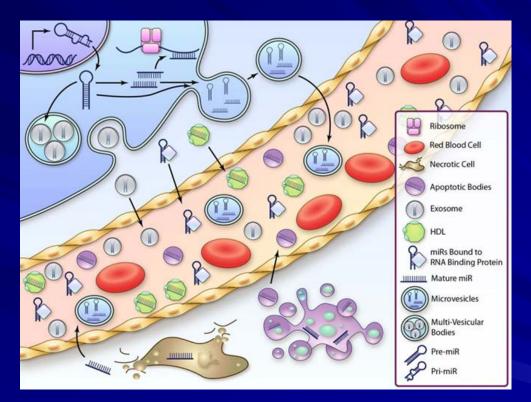
MicroRNA
Cell-free DNA

microRNA

- Short noncoding RNAs
- 20-22 nt long
- Post-transcriptional regulation of gene expression
- Physiological processes (proliferation, differentiation)
- Tumorigenesis

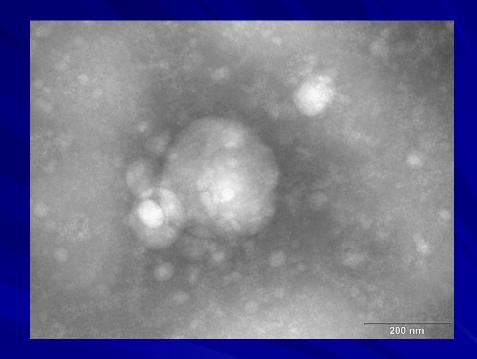
History of miRNA

Identified in 1993 in C. elegans


- Lin-4 larval stages of C. elegans
- About 1/3 of human genes regulated by miRNA
- About 2200 of human miRNA
- miR-15a and miR-16 identified in region 13q14 potential oncogenes in CLL

Lee, 1993 Calin, 2002

Circulating miRNA


http://circresearch.com/gallery/tag/circulating-mirna/

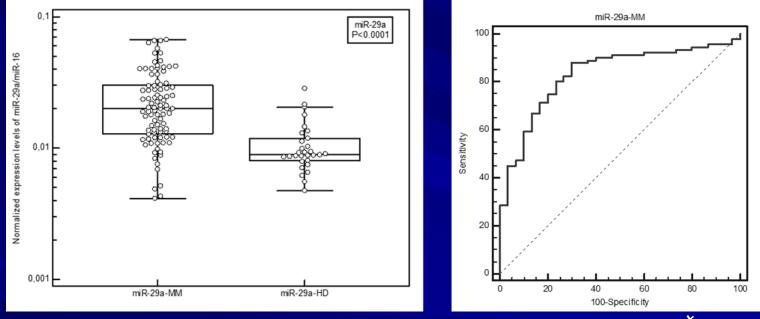
Exosomes

- □ 50-140 nm vesicles
- Proteins, NA
- Active secretion from cells
- Change gene expression, signaling in cells
- Remove chemo from cells actively
- Support tuorigenesis miRNA transport

Our pilot study

4 miRNA chosen based on MM pathogenesis
Their presence analyzed in serum of PB

- miR-410 locus 14q32 MM translocation
- miR-660 aberrant expression in MM
- miR-142-5p aberrant expression in MGUS and MM
- miR-29a increased expression in PC



Results of pilot study

miR-29a increased in MM Specificity 70%, sensitivity 88%, AUC=0.832

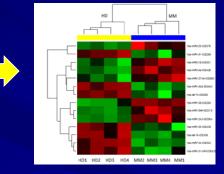
Ševčíková, 2012

Circulating miRNA as MG markers

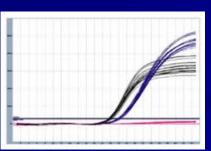
MM, MGUS and HD
103 MM at diagnosis
18 MM at relapse
57 MGUS
30 HD

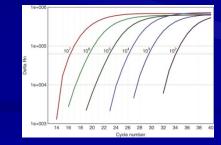
Kubiczková, 2014

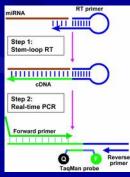
Methods


miRNA isolation

TaqMan Low Density Arrays


Differential expression analysis



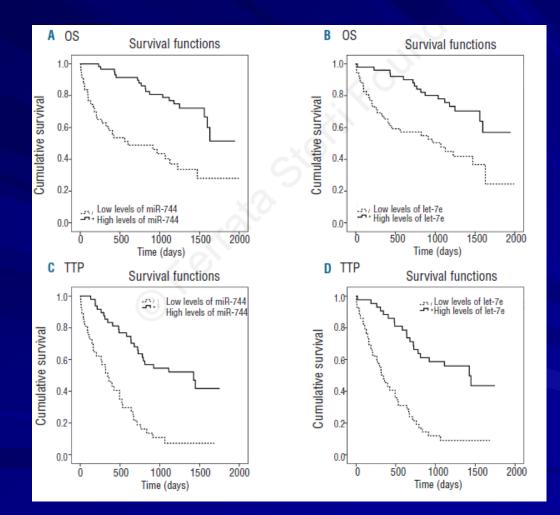

Data analysis

Correlation with clinically important parameters

Circulating miRNA as MG markers

miR-744, miR-130a, miR-34a, let-7d, let-7e deregulated in MG vs HD

 Combination of miR-34a and let-7e: MM vs HD vs MGUS


No correlation with PC in BM – other pathological changes in MM?

MASARIA KIANA BHO

Kubiczková, 2014

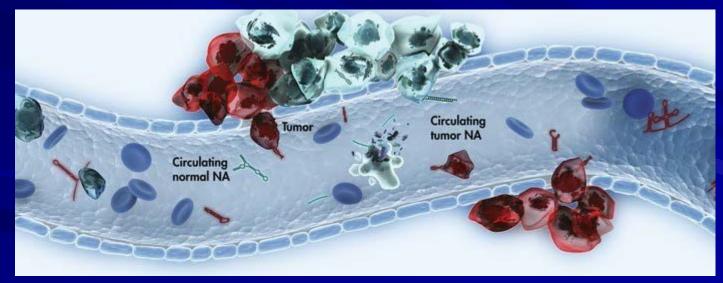
Low levels of miR-744 and let-7e - shorter OS

Kubiczková, 2014

New markers for MM

MicroRNA
Cell-free DNA

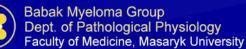
Cell-free DNA


- Short fragments of DNA (180 bp) in PB
- First described in 1949 (Mandel et Métais)
- 1977 described in tumor patients (Leon et al)
 - Higher levels in pts than controls
 - Higher levels in metastases
 - Lower levels after radiotherapy
- 1994 cfDNA carrying RAS mutation in MDS
- Used in prenatal diagnostics

cfDNA levels

Physiologically low (10-100 ng/ml)
 Change of quantity and quality in pathology
 Higher levels (1000 ng/ml) in tumors, inflammations - but not diagnostic


http://biomarkerinsights.qiagen.com/2016/08/17



How are cfDNA released from cells?

Apoptosis
Necrosis (tumor cells)
Active release (cell signaling)

Our cfDNA project

- Detect a patient specific VDJ rearrangement of the IgH locus in BM
- Check the rearrangement in cfDNA
- Follow the dynamics of the molecules after treatment
- Analyzed 85 pts, follow up up to 2 years after start of treatment

Summary - cfDNA

cfDNA carry various reaarangments
Possible to follow MRD in MM?

Summary

MM disease of older people
 New drugs dramatically improved survival
 Need more specific easily accessible markers
 Several possibilities - miRNA, cfDNA, lncRNA...
 Improvement in diagnostics and follow-up of patients

Liquid biopsies in the future?

- PB biopsies all heterogeneity of the tumor
- Less painful
- Several molecules
- Great potential

Acknowledgments

Babákova myelomová skupina, Ústav patologické fyziologie, Lékařská fakulta, MU

Sabina Ševčíková

Veronika Kubaczková Lenka Sedlaříková Božena Bollová Martina Valachová Jana Gregorová Veronika Kelbichová Kamila Novosadová

Oddělení klinické hematologie,

Fakultní nemocnice Brno

Miroslav Penka

Martina Almáši Renata Bezděková Božena Hanáková Lucie Říhová Barbora Sáblíková Renata Suská Pavla Všianská

LME

FAKULTNÍ NEMOCNICE BRNO

Interní hematologická a onkologická klinika

Fakultní nemocnice Brno Zdeněk Adam Marta Krejčí Luděk Pour Viera Sandecká Martin Štork

Institut biostatistiky a analýz LF MU

Jiří Jarkovský

Lucie Brožová

Ústav patologické fyziologie Lékařská fakulta, MU

Anna Vašků

Roman Hájek

Tomáš Jelínek Fedor Kryukov Elena Kryukova Zuzana Kufová

Laboratoř molekulární cytogenetiky Ústav experimentální biologie, PřF MU Petr Kuglík

Aneta Mikulášová Jan Smetana Markéta Wayhelová

Thanks for your attention

