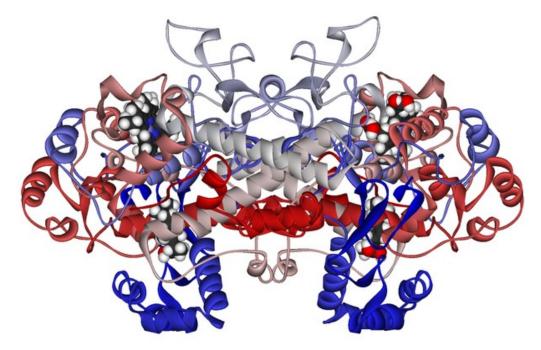
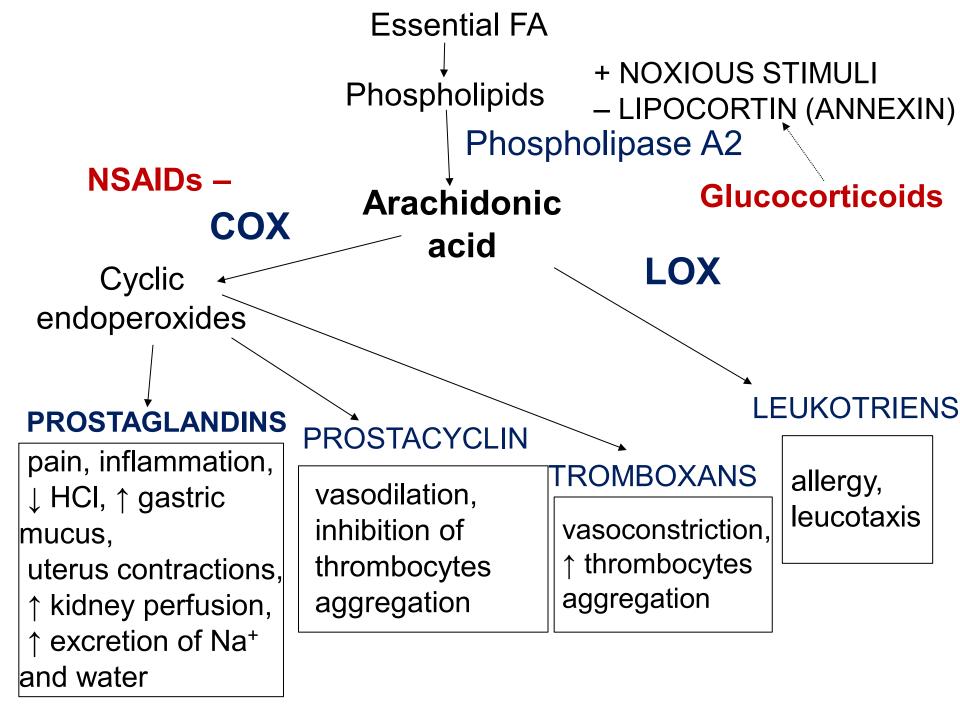

Pharmacotherapy of Pain

The Pain Pathway

1.) Peripheral nociceptors


- 2.) Primary afferent fibres → dorsal horn of spinal cord
- substance P, neurokinin A, glutamate
- Inhibition of pain transmission on spinal level = descending pathways from midbrain and medulla to dorsal horn (serotonine, noradrenaline, GABA, enkefalins...)
- 3.) Spinothalamic and spinorecticular tract (spine → thalamus/brainstem reticular formation)
- Localisation a emotional aspects of pain
- **4.) Thalamocortical pathway (thalamus → cortex)**
- Localisation, cause of pain + coordination of a response


NSAIDs

- Non-steroidal antiinflammatory drugs
- Inhibition of cyclooxygenase = ↓ prostaglandins
- Treatment of "common" pain, inflammatory diseases (gout, rheumatoid arthritis etc.), reduction of fever, combination of analgesics in stronger pain
- Administration p.o., rectal, topical, parenteral
- Binding to plasma proteins possible interactions
- Good GIT absorption, passage into the synovial fluid, through BBB, placenta...
- Classification: 1.) NON-SELECTIVE (COX1 ~ COX2)
 - 2.) PREFERENTIAL (COX1 < COX2)
 - 3.) SELECTIVE (COX1 <<< COX2)

Cyclooxygenase

- Isoenzymes: physiological, inducible, (CNS?)
- COX1 protection of gastric mucosa, kidney vasodilation, aggregation of thrombocytes
- COX2 site of inflammation, expressed due to ILs and TNF-α
- COX3 CNS?

Acetylsalicylic acid

- non-selective, irreversible COX inhibitor
- plasmatic esterases: ASA → SA + AA
- 30-100 mg antiaggregant, 500 mg analgesicantipyretic, over 1000 mg antiphlogistic
- gastric absorption, possible irritation and ulceration of GIT (MoA + acidity), renal excretion
- contraindications:
 children up to 12 years old Reye's syndrome
 - gastric ulcers, asthma before surgery
- elderly more susceptible to AE
- "aspirin asthma"
 - = leucotriens predominance
- other salicylates: choline salicylate, sulfasalazine...

Paracetamol (Acetaminophen)

- analgesic-antipyretic = without antiphlogistic and antiaggregant activity, no gastrotoxicity
- mechanism of action unclear:
 - COX3? serotonin? TRPV ion channels?
- dose: 10-15 mg/kg frequently underdosed!
- max. dose 4000 mg (8 tablets à 500 mg)
- hepatotoxicity = NAPQI, detoxification by glutathione
 - overdosing N-acetylcysteine therapy
- combinations with tramadol, codein, propyphenazone, antispasmodics
- suitable for children, elderly

Acetic Acid Derivatives

Diclophenac

- joint diseases → passage into synovial fluid
- shorter half-life, capsules with prolonged release
- cardiotoxicity higher doses, contraindication

Aceclofenac

- oral use only in the treatment of joint diseases
- relatively low gastrotoxicity
- also contraindicated for patients with CVD

Indomethacin

- strong effect, only for short-term treatment
- uricosuric effect = ↑ excretion of uric acid in the urine
 - used in acute gout attack
- † gastrotoxicity, changes in blood count, headache
 and CNS disorders (all of them very frequent)
- contraindicated for children

Propionic Acid Derivatives

lbuprofen – good tolerability, safe

- 200-400 mg analgesic, antipyretic
- 1400-1600 mg antiphlogistic
- max. dose 2400 mg
- suitable for children

Ketoprofen – topical use (skin phototoxicity!)

Dexketoprofen – oral use

Flurbiprofen – topical oral use (lozenges/pastilles)

Naproxen – relatively low gastrotoxicity, longer half-life, good for headache and toothache

Other Important Analgesics

Propyphenazone – with paracetamol and caffeine **Metamizole**

- analgesic-antipyretic with mild antispasmodic effect
- no antiphlogistic effect
- myelotoxicity (changes in BC) → only for short-term use
- combinations with antispasmodics (e.g. pitofenone, fenpiverinium)

Oxicams – long biological half-life:

- Piroxicam topical use, very long half-life (high risk of accumulation if taken orally)
- Meloxicam preferential effect on COX2
 - joint diseases good passage into synovial fluid
 - reduction of GIT adverse effects
- Lornoxicam non-selective effect on COX

Preferential COX2 Inhibitors

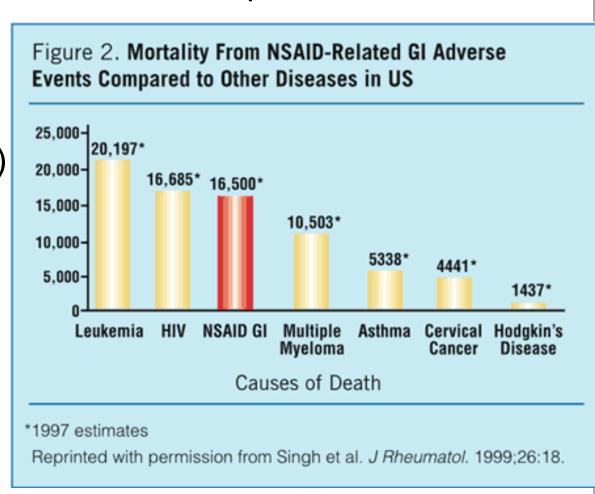
- COX1 < COX2
- reduction of GIT adverse effects
- analgesic, antiphlogistic and antiaggregant effect

Nimesulide

- inhibits also collagenases and elastases degrading cartilages + ROS scavenger
- hepatotoxicity → only for short

Meloxicam

Selective COX2 Inhibitors = Coxibs


- COX1 <<< COX2
- minimal GIT adverse effects
- joint diseases

- cardiovascular AE thrombotic diseases (due to inhibition of prostacyclin in endothelia)
 - contraindicated for patients with CVD
 - some of them withdrawn and lost market authorisation for severe CV and skin AE (rofecoxib)
- celecoxib, parecoxib, etoricoxib

Protection against NSAIDs toxicity

- use of safe dosage
- fight against overuse, misuse, "dependence"
- protection of gastric and intestinal mucosa (PPI – omeprazole)
- education of both patients and health professionals
- avoidance of drug-drug interactions

Opioid analgesics

Opiod analgesics = anodynes

- OPIUM Papaver somniferum, Papaveraceae
- Bind to opiod receptors changes in ion homeostasis of neurons → hyperpolarization, inability to conduct electrical impulses + changes in GABA signalling in specific parts of the brain

OPIOID RECEPTORS:

μ [mu] – supraspinal and spinal analgesia

к [kappa] – spinal and peripheral analgesia

δ [delta] – spinal analgesia

σ [sigma] – dysphoria, hallucinations, changes in perception (not an opioid receptor, bud some opioids have affinity for it)

Classification of Opioids

According to their receptor effects:

- 1.) Agonists:
 - a) strong effect (morphine, pethidine, methadone, fentanyl)
 - b) medium and mild effect (codeine, dextropropoxyphene)
- 2.) Partial agonists (buprenorphine) and agonists-antagonists (butorphanol)
- 3.) Atypical opioids (tramadol, tilidine, tapentadol)
- 4.) Antagonists (naloxone, naltrexone)
- According to their origin:
- a) endogenous (enkephalins, endorphins, dynorphins)
- b) natural (morphine, codeine...)
- c) semisynthetic (oxycodon, dihydrocodeine...)
- d) synthetic (pethidine, butorphanol, methadone, fentanyl...)

Opioid Agonists: Effects

mostly originate from activation of µ receptors

Central effects:

- depression of CNS: sedation → somnolence → coma
- depression of breathing ↓ sensitivity of respiratory center
- antitussive effect ↓ sensitivity of cough center
- emesis, nausea first doses, irritation of area postrema
- miosis via n. oculomotorius
- changes in hormonal levels: cortisol, ADH, GnRH → FSH, LH, testosteron...)

Peripheral effects:

- † smooth muscle tone constipation, urine retention, spasm of sphincters in GIT and GUT (contraindicated for colics!)
- CVS histamine liberation, vazodilation, postural hypotension
- RESP possible bronchoconstriction (histamine)

Opioid Agonists

Pharmacokinetics:

- good absorption from GIT, but frequently high first pass effect (= not suitable for oral use)
- pharmacologically active metabolites (e.g. codeine)

Addictive potential

- dependency producing substances
- tolerance need for higher doses
- craving for another dose
- abstinence syndrome
- Act No. 167/1998 Coll. on Dependency Producing Substances
- instructions for prescription and use
- methadone substitution therapy for the addicted

Opioid Agonists with Strong Effect

- MORPHINE 10 mg i.m., s.c., p.o., lasts 4-5 h
- METHADONE longer half-life, substitution therapy
- OXYCODON, HYDROCODON
 - with paracetamol (acetaminophen)
- PETHIDINE

Fentanils

- the most effective opioids
- lipophilic → good absorption
- shorter effect → infusions, TTS
- anesthesiology, algesiology
- FENTANYL or FENTANIL
- SUFENTANIL 500 times more effective than morphine

Opioid Agonists with Medium and Mild Effect

CODEINE

- metabolised to morphine
- analgesic combined therapy (paracetamol)
- antitussive: 10-30 mg
 - decreases secretion in bronchi and bronchioles
 - contraindicated for children

DIHYDROCODEINE

- cancer pain
- tablets with prolonged release

Partial agonists and Agonists-Antagonists

BUPRENORPHINE

- partial agonist of µ opioid receptors
- strong FP effect parenteral administration (buccal tablets)
- RMP Suboxone –
 combination therapy with
 naloxone (opioid addiction)
 - Buccal administration

- ↓ AE, ↓ dependency
- mild analgesic effect

BUTORPHANOL

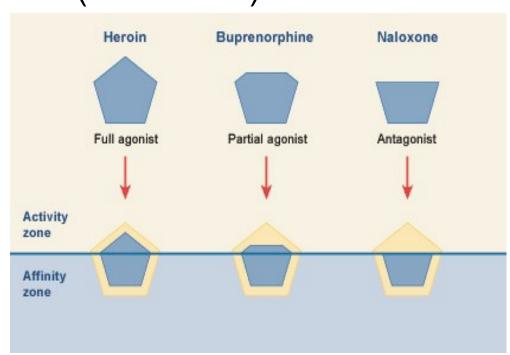
PENTAZOCINE

- κ a δ agonist
- µ antagonist
- mild analgesic effect
- σ and κ activation = hallucinations, euforia, dysforia, abnormal dreams

Atypical Opioids

TRAMADOL

- low affinity for µ receptors + blockade of 5-HT and NA re-uptake (neurotransmitters of pain pathway)
- max. dose 600 mg
- frequently causes nausea and emesis
- oral drops, tablets, modified release
- advantages: no attenuation of respiratory center no constipation

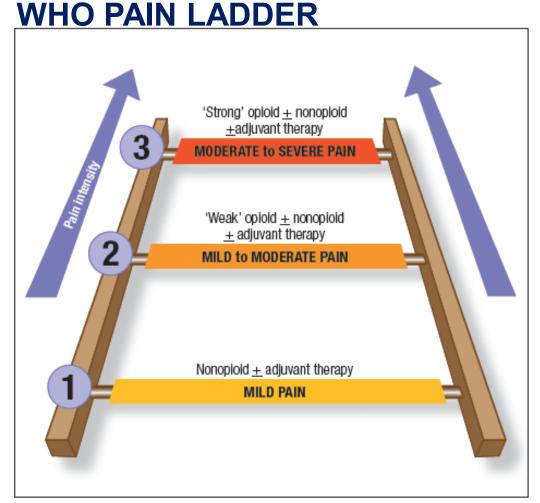

TILIDIN, TAPENTADOL

Opioid Antagonists

- treatment of acute opioid intoxication and overdosing
- treatment of addiction to opioids, heroin
- treatment of alcohol addiction (nalmefene)
- quick effect (in minutes), lasts 2-3 h
- parenteral use, oral use (nalmefene)

NALOXONE NALTREXONE

NALMEFENE


Strategy in the Treatment of Pain

1. CAUSAL TREATMENT

cause of pain

2. SYMPTOMATIC TREATMENT

pain itself

Figure 1. WHO Three-step Pain Ladder. This analgesic step ladder has been the treatment standard most used during the past 3 decades.

Anti-rheumatics – Therapy of RA

<u>DMARDs</u> – disease-modifying antirheumatic drugs

SULFASALAZINE

- bowel microflora decomposition → 5-aminosalicylic acid and sulfapyridine
- GOLD COMPOUNDS
 - e.g. sodium aurothiomalate
 - inhibition of phagocytosis
- CHOLOROQUIN
 - originally for treatment and prevention of malaria
 - inhibition of chemotaxis of leukocytes

METHOTREXATE

- immunosupressive therapy
- folic acid antimetabolite
- used in high dosis as cytostatic drug (cancer therapy)
- highly effective
- effect starts after 3-4 weeks

Anti-rheumatics

Targeted therapy:

- Targeted interference with immune cells and mediators
- Monoclonal antibodies, genetically engineered proteins...
- Expensive, prescribed only when conventional treatment fails
- Mechanisms of action:
 - anti-TNF-α drugs: ADALIMUMAB, infliximab, etanercept, certolizumab, golimumab
 - blockade of IL-6 receptor: tocilizumab
 - blockade of IL-1 receptor: anakinra
 - interference with T and B lymphocytes: abatacept, rituximab

NSAIDs:

- Alleviation of morning joint stiffness
- Analgesic and antiinflammatory effect
- DICLOFENAC, IBUPROFEN; MELOXICAM, CELECOXIB and the others...