

Life is a dynamic system with focused behavior, with

autoreproduction, characterized by flow of substrates,

energies and information.

## **Reproduction in mammals (humans):**

- 1) Sexual reproduction
- 2) Selection of partners
- 3) Internal fertilization
- 4) Viviparity

| Pregnancy (days)  |         |  |  |  |
|-------------------|---------|--|--|--|
|                   |         |  |  |  |
| Mouse             | 20      |  |  |  |
| Rat               | 23      |  |  |  |
| Rabbit            | 31      |  |  |  |
| Dog               | 63      |  |  |  |
| Cat               | 65      |  |  |  |
| Lion              | 107     |  |  |  |
| Pig               | 114     |  |  |  |
| Sheep             | 149     |  |  |  |
| Human             | 260-275 |  |  |  |
| Cow               | 285     |  |  |  |
| Rorqual           | 360     |  |  |  |
| Elephant (Indian) | 609     |  |  |  |

- 5) Eggs, resp. embryos smaller, less, slow development, placenta
- 6) Low number of offspring, intensive parental care

# High investment, low-volume reproduction strategy!

## **Reproduction in humans – gender comparison:**

- 1) Both male and female are born immature (physically and sexually)
- 2) Sex hormones are produced <u>in men</u> also during prenatal and perinatal periods, not in women!
- 3) Reproduction period significantly differs puberty, climacterical
- 4) Character of hormonal changes significantly differs cyclic vs. non-cyclic

## **SEX DIFFERENTIATION**



- Meiosis occurs only in germ cells and gives rise to male and female GAMETES
- Fertilization of an oocyte by an X- or Y-bearing sperm establishes the zygote's
   GENOTYPIC SEX
- Genotypic sex determines differentiation of the indifferent gonad into either an OVARY or a TESTIS
- The testis-determining gene is located on the Y chromosome (testis-determining factor, sex-determining region Y)
- Genotypic sex determines the GONADAL SEX, which in turn determines
   PHENOTYPIC SEX (fully established at puberty)
- Phenotypic differentiation is modified by endocrine and paracrine signals (testosteron, DHT, AMH)

## AMH (MIH, MIF, MIS, MRF) – ANTIMÜLLERIAN HORMONE

1940, TGF-β, receptor with internal TK activity

Source: Sertoli cells (5<sup>th</sup> prenatal week) or embryonal ovary (36<sup>th</sup> prenatal week)

In adult women – granulosa cells of small follicles (NO in antral – under influence of FSH - and atretic follicles)

### Role in men:

### **TUMOUR MARKER**

- Regression of müllerian duct
- Marker of central hypogonadism

#### **Role in women:**

- Lower plasmatic levels (by one order), till climacterical
- Estimation of ovarian reserve (AMH level corresponds to pool of pre-antral follicles)
- Marker of ovarian functions loss (premature climacterical)
- Diagnosing of polycystic ovaria syndrome

## **BIOSYNTHESIS OF STEROID HORMONES**

Impact of androgens on CNS.



cortex of suprarenal glands

gonads

## GONADOLIBERIN (GnRH, GONADOTROPIN-RELEASING HORMONE)

Unknown function

#### Characteristics

- Specific origin of GnRH neurons out of CNS
- GnRH-II, (GnRH-III)  $G_{q/11}$  (PKC, MAPK)
- Important up and down regulation (steroidal hormones, gonadotrophs)
- **Down regulation** malnutrition, lactation, seasonal effects, aging, continual GnRH
- **Up-regulation** effect of GnRH on gonadotrophs (menstrual cycle)
- GNRH1 hypothalamus; GNRH2 other CNS areas



### Hypothalamo-hypophyseal axis

- FSH, LH
- Significance of GnRH pulse frequency (glycosylation)
- Menstrual cycle, puberty and its onset

### Other functions and places of production

- CNS neurotransmitter (area preoptica)
- Placenta
- Gonads
- Tumours (prostate, endometrium)

#### Clinical consequences

Continuously administered GnRH analogues – treatment of oestrogen/steroid-dependent tumours of reproduction system

- Treatment of premature puberty (leuprorelin – agonist!)

### GONADOLIBERIN – REGULATION OF SECRETION

- Inputs from various CNS areas (pons, limbic system)
- Dominating inhibitory effect of sex hormones with exception of estradiol (negative-positive feedback)
- Kisspeptin in women
- Inhibitory effect of PRL
- Effect of circulating substrates (FA, Glu)
- Leptin (NPY, kisspeptin)
- Stress of various origin
  - Acute MC impairment without effect on fertility
  - Chronic impairment of fertility, decreased levels of circulating sex hormones



## CONTROL OF SEX HORMONES SECRETION



### **GONADOTROPHINS - FSH and LH**

#### Characteristics

- Glycoproteins
- Heterodimer, different expression of subunits, glycosylation
- Structurally close to hCG (placenta)

#### Regulation of secretion

- sex hormones, local factors paracrine (activins, inhibins, follistatin)
- (+) glutamate, noradrenaline, leptin
- (-) GABA, opioids
- Key role of kisspeptins, neurokinin B and substance P in GnRH secretion – FSH/LH
- Estrogens, progesterone, androgens direct influence on gonadotrophs, indirect influence through GnRH
  - Estrogens (-) inhibition of transcription (α),
     kisspeptin NEG
  - Estrogens (+) shift
  - Progesterone (-) influences pulsatile secretion of GnRH
  - Testosterone, estradiol (-) males, kisspeptin neurons and AR
- GnRHR Ca<sup>2+</sup> mobilization
- Different half-life for circulating LH and FSH



### **ACTIVINS and INHIBINS**

#### **Inhibins**

- dimeric peptides ( $\alpha + 1$  or two  $\beta_A$  or  $\beta_B$ )
- circulating hormones produced by gonads
- inhibin A dominant follicle, corpus luteum
- inhibin B testes, luteal and early follicular phase of ovarian cycle

#### **Activins**

- dimeric peptides dimers of  $\beta$  subunits
- FSH stimulation
- autocrine/paracrine factors
- other tissues growth and differentiation

#### **Folllistatin**

- monomeric polypeptide
- FSH inhibition
- "supplementary " regulation of FSH and LH secretion
- activins = regulation of transcription, follistatin and inhibins = inhibition of activins through appropriate activin-receptor binding



### **FSH** and **LH** - functions

#### **FEMALES**

- FSH
  - Growth and development of follicular cell (maturation)
  - Biosynthesis of estradiol
  - Regulation of inhibin synthesis during follicular phase
  - Upregulation of LH receptors (preovulatory follicles)
  - Selection of dominant follicle
  - Recruitment of follicles for next cycle
- LH
  - Stimulation of estrogen synthesis on various levels (theca)
  - Oocyte maturation (preovulatory follicle)
  - Rupture of ovulatory follicle, ovulation
  - Conversion of follicle wall to corpus luteum

#### **MALES**

- LH
  - Intratesticular synthesis of testosterone (Leydig cells)
- FSH
  - Spermatogenesis (Sertoli cells)

### Clinical significance

- Possible deficiency of gonadotropins
- Hypogonadotropic hypogonadism
- Kallmann syndrome
- Syndrome Prader-Willi
- Reproductive dysfunction

## **CONTROL OF SEX HORMONES SECRETION – simplified scheme**



## **LEPTIN A REPRODUCTION**

Activation of reproductive system does not depend on age, but on nutritional state of organism.

**LEPTIN**: ob-protein, ob-gen, 7.chromosome ,, $\lambda$ επτοσ" = thin, slim polypeptide, 176 AA

Bound in **hypothalamus**: n.paraventricularis, suprachiasmaticus, arcuatus a dorsomedialis

Produced in: adipocytes, placenta, stomach, mammal epithelium (???) Leptin plasmatic levels are sex-dependent (less in males) and do not depend on nutritional state

Leptin receptor: gene on 4.chromosome, 5 types of receptor, A-E Receptor B – effect in **gonads and hypophysis** 

Leptin is not only a factor of body fat amount, but affects also the regulation of neuroendocrine functions including hypothalamo-hypophyseo-gonadal axis.



area preoptica - reproduction

???Critical amount of adipose tissue – leptin – hypothalamus – LHRH - puberty

Effects of leptin on testes are not fully elucidated yet.

Testosterone and dihydrotestosterone suppress production of leptin in adipocytes!

#### REGULATION OF PUBERTY ONSET BY LEPTIN

Critical body mass.

Leptin plasmatic levels in pre-pubertal children are sex-independent.

Pre-pubertal "leptin resistance" (relative).

In puberty, girls produce 2x more leptin per 1kg of adipose tissue than boys.

## **Co-hormone**

### **PROLACTIN - PRL**

#### Characteristics

- Protein
- Lactotropic cells (only PRL)
- Mammosomatotrophic cells (PRL and GH)
- Hyperplasia pregnancy and lactation
- Expression regulated by oestrogens, dopamine, TRH and thyroid gland hormones
- Polypeptide, circulating in 3 forms (mono-, di-, polymer)
- Monomeric PRL highest biological activity
- Monomeric PRL further cleaved (8/16 kDA)
- 16 kDA PRL anti-angiogenic function
- PRLR mamma, adenohypophysis, suprarenal gland, liver, prostate, ovary, testis, small intestine, lungs, myocardium, SNS, lymphocytes

#### Regulation of secretion

- Pulsatile secretion: 4 − 14 pulses/day
- Highest levels during sleep (REM, nonREM)
- Lowest levels between 10:00 and 12:00
- Gradual decrease of secretion during aging
- TIDA cells dopamine (-, D2R)
- Paracrine endothelin-1, TGF-β1, calcitonin, histamine (-)
- FGF, EGF (+)
- TRH, oestrogens, VIP, serotonin, GHRH at higher concentrations (+)
- CCK ?



## **PROLACTIN - FUNCTIONS**

**MAIN FUNCTION:** Milk production during pregnancy and lactation = "survival" function

Other functions – metabolic, synthesis of melanin, maternal behaviour

#### Breast development a lactation

- Puberty mamma development under the effects of GH a IGF-1
- Effect of oestrogens and progesterone
- Age of 8 13
- During pregnancy proliferation of alveoli and proteosynthesis (proteins of milk and colostrum)
- During the 3rd trimester production of colostrum (PRL, oestrogens, progesterone, GH, IGF-1, placental hormones)
- Lactation increase in PRL post-partum, without sucking drop after approx. 7 days
- Milk accumulation prevents further PRL secretion
- Role of oxytocin

#### Reproductive function of PRL

- Lactation = amenorrhea and secondary infertility
- Inhibition of GnRH secretion
- Significance of kisspeptin neurons (PRLR)
- Putative role of metabolic factors

#### Immune function of PRL

- Anti-inflammatory effects?

#### Clinical consequences

- Hyperprolactinemia some antihypertensive drugs, chronic renal failure
- Macroprolactinemia
- Galactorrhoea role of GH (acromegaly)
- PRL deficiency

## **DOPAMINE** (PIH, prolactin-inhibiting hormone)

#### Characteristics

- D2R (G protein inhibition, AC, cAMP decrease, inhibition of shaker type K<sup>+</sup> channels, MAPK, PAK proliferation!)
- D1R (activation)

#### Hypothalamo-hypophyseal axis

- Inhibition of PRL (D2R) secretion lactotropic cells
- ! Lactotrophs with continual high PRL production
- PRL secretion regulated also on adenohypophysis level (paracrine, autocrine)
- Neuroendocrine regulation of PRL secretion pregnancy, lactation, menstrual cycle, sensory inputs

#### Other functions and places of synthesis

- Blood vessels vasodilatation (physiological concentrations)
- Kidneys sodium secretion
- Endocrine pancreas decrease in insulin secretion
- GIT lower motility
- Effect of dopamine on immune system

#### Clinical significance

- Effect of medication on dopamine and PRL secretion
- Cardial shock
- Neurodegenerative diseases (Parkinson)
- Antipsychotics (antag.)

## DOPAMINE – REGULATION OF SECRETION

#### PROLACTIN-RELEASING FACTORS (PRF)

- TRH, oxytocin, VIP
- under specific conditions ADH, ATII, NPY, galanin, substance P, GRP, neurotensin
- prolactin-releasing peptide (PrRP) stress, satiety (other parts of CNS)

- Important feedback mechanism (short loop) of PRL secretion regulation
  - Circadian rhythm (maximum in the morning)
  - Nipple stimulation (1-3 min, peak 10 20 min)
- Relevance of studying PRL secretion and its regulation psychopharmaceutics!



### CRITICAL DEVELOPMENTAL PERIODS

- 1) Birth
- 2) Weaning
- 3) Puberty (adolescence)
- 4) Climacterical (menopause)

Critical body mass (critical amount of adipose tissue)

## **Puberty**

- Adrenarche
- Pubarche
- Menarche
- Telarche

Pubertas praecox (central)

Pseudopubertas praecox (peripheral)

Late puberty

# MALE REPRODUCTION SYSTEM

## **HUMOURAL CONTROL OF REPRODUCTIVE FUNCTIONS IN MAN**



**ABG** 

aromatase

## TESTOSTERON PRODUCTION:

- •Embryonic sex differentiation, development of generative organs
- •Perinatal descensus testis (?)
- •Fertile period LH pulsation
- •After 50.year decrease of sensitivity to LH



**Table 1.1** Regulation of hypothalamic–pituitary–gonadal axis hormone release

| Hormone      | Autocrine regulation | Paracrine regulation                                                       | Endocrine regulation                                                 |
|--------------|----------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|
| GnRH         | GnRH itself (-)      | GnRH II (+), IGF-1 (+),<br>kisspeptin (+)                                  | Testosterone (-), estrogens (-), neurotensin (+), norepinephrine (+) |
| FSH          | _                    | Activin (+), follistatin (-)                                               | GnRH (+),<br>estrogens (-),<br>inhibin B (-)                         |
| LH           |                      | Activin (+), follistatin (-)                                               | GnRH (+),<br>testosterone (-)                                        |
| Testosterone | _                    | IGF-1 (+), GH(+),<br>CRH (-), TGF- $\beta$ (-),<br>IL-1 $\alpha$ ( $\pm$ ) | LH (+)                                                               |

<sup>+</sup> Stimulatory effect, – Inhibitory effect. Transforming growth factor- $\beta$  (TGF- $\beta$ ), corticotropin-releasing hormone (CRH), interleukin  $1\alpha$  (IL- $1\alpha$ ), growth hormone (GH), insulin-like growth factor 1 (IGF-1).

## **SPERMATOGENESIS**



Leydig cell Capillary

Basal membrane

Spermatogonium

## **Tight junction**

Spermatocyte

Spermatide (haploid)

Sertoli cell (contraction)

Spermia

Acrosom (enzymes)

Head (nucleus, DNA)

Body (mitochondria)

Flagella (microtubules, 9+2)

70 days

1-64 (6 divisions)

Temperature < 35°C

Lumen:

androg., estrog.

 $K^+$ 

glutamate, aspartate inositol

## **PRODUCTION OF SPERM**



## **SPERMIOGRAM**

| Volume                 | 1,5 - 2,0                                    |
|------------------------|----------------------------------------------|
| рН                     | 7,2 - 8,0                                    |
| Concentration of sperm | 20 mil/ml                                    |
| Total number of sperm  | 40 mil and more                              |
| Motility               | 50% and more in category A+B, above 25% in A |
| Morphology             | 30% and more of normal forms                 |
| Vitality               | 75% and more of living sperm                 |
| Leukocytes             | up to 1 mil/ml                               |
| Autoaglutination       | < 2 (scale 0 - 3)                            |

## SEXUAL REFLEXES



# FEMALE REPRODUCTION SYSTEM

# **OOGENESIS**

| DEVELOPMENT:                        |          | 6-8 weeks                                     | GERMINAL EPITH.                                      |
|-------------------------------------|----------|-----------------------------------------------|------------------------------------------------------|
| hormonally independent              |          | OOGONIA<br>mitotic division                   | FOLLICLE<br>PRIMORDIAL                               |
|                                     | 24 weeks | OOCYTES I.                                    | $7 \times 10^6$                                      |
|                                     | birth    | 1. meiosis<br>prophase                        | $2 \times 10^6$                                      |
| hormonally<br>dependent<br>(cyclic) | puberty  | OOCYTES II. haploid 2. meiosis metaphase OVUM | 3 x 10 <sup>5</sup> DOMINANT ATRETIC GRAAF OVULATION |
|                                     |          | 2. meiosis – end                              |                                                      |
|                                     |          |                                               |                                                      |



Daan and Fauser, Maturitas 82 (2015) 257–265



ovarian

uterine

gonadoliberin (GnRH)

FSH, LH

estradiol

progesteron

basal temper.





## **OVARIAN CYCLE**



| Primordial | Primary  | Graaf      | Corpus haemorrhagicum | C. luteum |
|------------|----------|------------|-----------------------|-----------|
|            | follicle |            |                       |           |
| 25μ        | 150μ     | up to 2 cm |                       |           |

estradiol (estrogens)

progesteron (progestins)

### **VESICULAR FOLLICLE**

#### PRIMARY FOLLICLE - FSH

Growth acceleration of primary follicle – change into vesicular follicle:

1) estrogens released into follicle stimulate granul. cells

**UP REGULATION** of **FSH** receptors and **intrinsic positive feedback** (higher sensitivity for FSH!!!)

- 2) **UP REGULATION** of LH receptors (estrogens and FSH) another acceleration of growth due to "higher sensitivity" to LH (**positive feedback**)
- 3) Increased estrogens and LH secretion accelerates growth of theca cells, secretion is increased
  - → explosive growth of follicle

## **DOMINANT FOLLICLE**

- 1. High levels of oestrogens from the fastest-growing follicle
- 2. Negative feedback on FSH production from adenohypophysis
- 3. Gradual decrease in FSH secretion
- 4. "Dominant follicle" continues in growing due to intrinsic positive feedback
- 5. Other follicles grow slowly and subsequently become atretic

# **MECHANISMS OF OVULATION**



## **HUMOURAL REGULATION OF THE CYCLE**



Artesia of follicle (except of one)

Feedback -/+

Involution of corpus luteum

## **EFFECTS OF OVARIAN HORMONES**

|                          | ${f E}$                                     | ${f P}$                     |  |  |  |
|--------------------------|---------------------------------------------|-----------------------------|--|--|--|
| Ovaries:                 | maturation of follicles                     |                             |  |  |  |
| Hysterosalpinx:          | motility                                    | motility                    |  |  |  |
| Uterus:                  | proteosynthesis                             | proteosynthesis             |  |  |  |
|                          | vascularisation and proliferation of endom. | secretion of endom. glands  |  |  |  |
|                          | motility                                    | glycogen                    |  |  |  |
|                          |                                             | motility                    |  |  |  |
| Cervix:                  | colliquation of "plug"                      | creation of "plug"          |  |  |  |
| Vagina:                  | cornification of epithelium                 | proliferation of epithelium |  |  |  |
| Mamma:                   | growth of terminals                         | growth of acines            |  |  |  |
| Secondary sexu           | al signs +                                  | _                           |  |  |  |
| Adipose tissue:          | store (predilection), (critical amount)     | _                           |  |  |  |
| Bone tissue:             | absorption                                  | -                           |  |  |  |
|                          | closure of fissures                         | -                           |  |  |  |
|                          | development of pelvis                       | -                           |  |  |  |
| Total water retention: + |                                             | +                           |  |  |  |
| Sexual behaviou          | r: +                                        | _                           |  |  |  |

## **ASSISTED REPRODUCTION TECHNIQUES**

- 1. STIMULATION OF OOGENESIS (maturation of more follicles)
- 2. STIMULATION OF SPERMIOGENESIS (vit. E)
- 3. INSEMINATION (treated sperm, applied deeply into uterus)
- 4. IVF (in vitro fertilisation)

# **IVF PROCEDURES**

- STIMULATION OF OVARIES
- 2. TIMING OF TAKING THE OOCYTES
- 3. EXTRACORPOREAL FERTILISATION OF OOCYTES
- 4. EMBRYOTRANSFER AND MAINTAINANCE THERAPY
  - Ad 1) PROTOCOLS OF OVARIAL STIMULATION (short of long stimulation protocols)
  - Stimulation of ovaries –FSH and LH, 3. 12. day of cycle, SOMETIMES combined with GnRH agonists or antagonists
  - Ad 2) TIMING OF TAKING THE OOCYTES
  - Between 12. and 17. days of cycle, US controlled, after stimulation of oocyte maturation by hCG, aspiration from follicular liquid in analgesia or anaesthesia
  - Ad 3) EXTRACORPOREAL FERTILISATION OF OOCYTES (cultivation of sperm and oocytes in vitro for 48 hrs; test of sperm surviving min.40%; micromanipulation techniques ICSI a AH = gentle rupture of zona pellucida; prolonged cultivation up to 120 hrs)
  - Ad ) EMBRYOTRANSFER (transfer of max. 3 embryos in stage of morula or blastula; genetic examinations) and MAINTENANCE THERAPY (progesterone)

## **CONTRACEPTION (BIRTH CONTROL)**

- RHYTHM METHOD
- SPERMICIDE SUBSTANCES
- COITUS INTERRUPTUS
- CONDOM, PESSARY
- IUD
- HORMONAL CONTRACEPTIVES risk of failure less than 1%
- VASECTOMY AND LIGATION OF HYSTEROSALPINX

Hormonal curettage (excochleation). Substitution therapy in climacterium.

## HORMONAL CONTRACEPTION

• block of ovulation by suppression of hypothalamic releasing hormones

(block of preovulatory surge of LH)

- changes of character of cervical plug (progestin thickens mucus)
- changes of endometrium (suppression of its growth)
- changes of hysterosalpinx motility



### **FERTILISATION PROCESSES**









(8th week!!!)



Placental maternal footal





Foetoplacental unit

| MOTHER       | PLACENTA       | FOETUS       |  |
|--------------|----------------|--------------|--|
| cholesterol— | pregnenolone   | <b>DHEAS</b> |  |
|              |                | 16OH-DHEAS   |  |
|              | <b> </b>       |              |  |
| <b>←</b>     | progesterone – | cortisol     |  |
|              |                | aldosterone  |  |
| DHEAS —      | →estradiol ←   |              |  |
|              | Estriol←       |              |  |

Excretion of estriol in urine – index of foetal status

#### PHYSIOLOGICAL CHANGES DURING PREGNANCY

#### **Changes of reproductive organs**

#### Uterus

- Growth (from 60 g to 1000 g), Change of position
- Hyperaemia
- Functional differentiation of myometrium

#### Cervix

- Changes of colour, consistency; shortening
- Hypertrophy a hyperplasia of glandules mucus plug

### Vagina

Changes of colour, increase of secretion

### External genitals

Vascularization, vasocongestion (changes of colour)

#### **Somatic changes**

#### Breasts

- Growth alveolar as well as ductal part
- Enlargement and hyperpigmentation of mammillae and areolas

#### Skin

- Increase in subcutaneous fat
- Changes in connective tissue
- Hyperpigmentation

## **Endocrine and metabolic changes**

## **Immunological changes**

## **Psychic changes**

#### ENDOCRINE and METABOLIC CHANGES DURING PREGNANCY

## **Endocrine glands**

## Thyroid gland

 Slight hypertrophy (E), increase in thyroxine production, in III. trimester BEE +25%

## Parathyroid glands

Increase in production of parathormone

## Adrenal glands

Increase in production of aldosterone

#### Pancreas

Hyperplasia of Langerhans islets

## Anterior pituitary gland

#### **Metabolism**

• Weight gain: 12-15 kg

### Glycaemia

- Glc main energetic source for foetus
- Prohyperglycemic state
- Decrease of renal glucose reabsorption, increase in glomerular filtration - glycosuria
- Gestational diabetes
- Increased demand for Ca (1300 mg), P (1200 g) and Fe (18 mg/day)
- **Water** retention: +6.5 1

#### **OXYTOCIN**



#### Clinical significance

- Oxytocin analogues

#### Characteristics

- Mechanoreceptors/tactile receptors
- Magnocellular neurons (PVN, SON)
  - inhibition by endogenous opioids, NO, GABA
  - Autocrine (+ ZV)
  - Prolactin, relaxin (-), Estrogens (+)
- OXT receptors  $(G_{q/11})$  effect of up/down regulation
- Acts together with prolactin and sex hormones

#### **Functions**

- Lactation (under 1 min)
- Childbirth
  - rhythmical contractions of smooth muscles (gapjunction, stimulation of prostaglandin synthesis – extracellular matrix)
  - postpartum bleeding
  - uterus involution
- Ejaculation (males)
- Behavior

#### Other functions and places of synthesis

- CNS
  - Stimulation of ACTH secretion through CRH
  - Stimulation of ADH/induced vasoconstriction
  - Stimulation of prolactin secretion
  - Memory traces recollection inhibition
  - Maternal behavior

### **OXYTOCIN RECEPTORS**

- OXT receptors  $(G_{q/11})$ 
  - Myoepithelial cells
  - Myometrium
  - Endometrium
  - CNS
- PLC, IP<sub>3</sub>, Ca<sup>2+</sup>
- Target molecule MLCK (myosin light chain kinase)



Smooth muscle contraction

# **OXYTOCIN**

- 9 AA, differs from ADH in 3. a 8. AA
- Precursor molecule is synthetized in the same location as ADH (nucleus paraventricularis)
- Stimulus for synthesis: dilatation of birth path caused by pressure of foetus and stimulation of mechanoreceptors at breast nipple
- Reflex release: during breast-feeding, orgasm
- Main effects on reproduction system:
  - Uterokinetic effects (induction of parturition), milk ejection, involution of uterus
  - In men: probably increases contractions of smooth muscle in *ductus* deferens
- Regulation of water and mineral metabolism natriuretic effect, potentiation of ADH effect
- Effect on memory: opposite to ADH effect inhibits forming of memory and its recollection
- Note: Melanocytes inhibiting factor from oxytocin, modulates certain types of receptors, modulation of melatonin effects (melatonin – epiphysis, together with glomerulotrophin and DMT, circadian/circannual biorhythms, controlled by hypothalamus, information from retina)

## **INDUCTION OF BIRTH**

maternal placental foetal

$$P > E \longrightarrow E > P$$





1-3 days after birth; initiated by decrease of oestrogens' concentrations post partum **LACTATION GnRH** PIF **PSF** OX. **FSH** PROL. stop of cycle LH **MAMMA** PH GC GH milk production ejection •  $0.6-2 \, l/day$ **UTERUS HCS** E P placental hormones involution

Composition of milk: water (88%), fat (3,5%), lactose (7%), proteins (1%) trace minerals (Ca), vitamins, antibodies

(hyperprolactinaemia)

## LEPTIN AND REPRODUCTIVE FUNCTIONS IN WOMEN

#### LEPTIN IN PREGNANCY

- Synthesised by placenta from the 18th week of pregnancy.
- Dramatic increase in maternal blood after the 34th week.
- Synthesis in placenta, foetal adipose tissue and growing maternal adipose tissue.
- **BUT** leptin plasmatic levels in non-pregnant women do not correspond to adipose tissue amount (BMI).
- Decrease after delivery down to the levels typical for non-pregnant women.
- Leptin may play a role in proliferation and function of trophoblast, and thus affects foetal growth.

#### LEPTIN IN NEWBORNS

- Plasmatic levels of leptin correspond to newborn body mass and BMI.
- Blood of newborn contains maternal and foetal leptin.
- Girls have higher levels of leptin than boys.
- It is supposed, that sex differentiation of plasmatic levels of leptin is already genetically given, since it is not affected postnatally by sex hormones.