General principles of endocrine functions

Integration systems of the organism

- Integration and coordination = maintaing the integrity and activity of the organism on all levels in the relation to the changing external and internal environments
- Hormonal system
- Nervous system
- Immune system

No system works independently = functional integration

- Hormones
- Neurohormones
- Neurotransmitters
- Paracrine (autocrine) effectors

How do cells communicate?

- Intracrine
- Autocrine
- Paracrine
- Neurocrine
- Endocrine

source

Neuroendocrine

environment

target cell

	source	environment	target cell
endocrine	gland	blood	
* 1	 synthesis/secretion no influence on specificity of effect 	 universal environment dilution and interactions 	 receptor = specificity cell response number of receptors signaling pathways other ligands metabolisation of
acrine, autocrine	cell	matrix/interstitial fluid	
paracri	 synthesis/secretion main determinant of target cell (determined by localization) 	 diffusion binding proteins proteases components of extracellular matrix 	 specificity and sensitivity diffusion barrier determinants of gradient inhibition signaling pathways effect of other ligands binding proteins

macrophage

1,25-[OH]₂D₃

macrophage 1,2

1,25-[OH]₂D₃

1,25-[OH]₂D₃

kidney - proximal tubule

Hormones

- Starling 1905 secretin
- Glandotropic hormones
- Aglandotropic hormones
- Target cells
- Limited time of effect

Source: Molina PE: Endocrine Physiology, 4th Edition: www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Chemical nature of hormones

DERIVED FROM AMINOACIDS

PEPTIDES AND PROTEINS -Hypothalamic hormones -Adenohypophyseal hormones -Insulin, glucagon, somatostatin -Gastrin, cholecystokinin, secretin -Natriuretic peptides -Erythropoietin, thrombopoietin -PTH, PHrP -etc

NH-

Chemical nature of hormones

Hormone – characteristics	Peptides – proteins	Catecholamines	Steroid hormones	Thyroid hormones
Ph-CH properties	hydrophilic	hydrophilic	lipophilic	lipophilic
synthesis	proteosynthesis	Tyr modification	CH precursors	Tyr modifications
storage	secretory granules	secretory granules	not present	colloid
secretion	controlled exocytosis	controlled exocytosis	diffusion	diffusion
transport	free	free/weakly bound	bound	bound
elimination half-life	short	very short	moderate	long
elimination nall-life	(4 – 40 – 170 min)	(2 – 3 min)	(up to 180 min)	(20 hours – 7 days)
receptors	membrane	membrane	cytosol	nuclear
effect	short-term	very short-term	long-term	long-term
cell response	quick	very quick	slow	slow

CHEMICAL STRUCTURE OF HORMONES DETERMINES THEIR BIOSYNTHESIS, STORAGE, RELEASE, TRANSPORTATION, ELIMINATION HALF-LIFE, WAY OF ELIMINATION AND THE MECHANISM OF EFFECT ON TARGET CELLS

Hormones

- Pleiotropic effects
- Multiplicity
- Permissive effect

Arterioles – α 2 receptors

Endocrine organs

- specialised cells specialised organs ("endocrine")
- "secretory" cells organs with endocrine function
- cells without specialised secretory function
- cells converting hormone precursors

Clinical aspects

Production of hormones by tumors – PARANEOPLASTIC SYNDROMES

Lung tumors

- ADH (hyponatremia)
- ACTH (Cushing syndrome)
- PTHrP (hypercalcaemia)

Liver and kidney tumors – erythropoietin

(polycythemia)

GIT tumors

ACTH (Cushing syndrome)

Secretion of hormones and its regulation

- Neuronal control
 - hypothalamus
 - sympathetic/parasympathetic nervous system
- Hormonal control
- Regulation od secretion by ions or substrates (Glu, AA)

Hormone secretion is controlled by feedback system

Positive feedback – why?

Pinilla, L., Aguilar, E., Dieguez, C., Millar, R. P., Tena-Sempere, M., 2012. KISSPEPTINS AND REPRODUCTION: PHYSIOLOGICAL ROLES AND REGULATORY MECHANISMS. Physiological Reviews. 92, **1235-1316**.

FIGURE 1. Neurobiology of the hypothalamic-pituitary-gonadal (HPG) axis. Schematic presentation of the major elements of the neuroendocrine axis controlling reproduction: the HPG axis. Hypothalamic GnRH neurons, which receive trans-synaptic and glial inputs, release GnRH to the hypophysial portal blood system. In turn, GnRH dictates the pulsatile secretion of gonadotropins, LH and FSH, that stimulate the maturation and regulate the function of the gonads; note that in the scheme, both the overy and testis are presented. These major hormonal elements are connected via feed-forward and feedback regulatory loops. The function of the HPG axis is under the regulation of several peripheral signals that include gonadal steroids, responsible for feedback control: testicular testosterone (T) conducts inhibitory actions on GnRH/gonadotropin secretion (negative feedback), whereas ovarian steroids, mainly estradiol (E2) and progesterone (P), can carry out both negative- and positive-feedback actions depending on the stage of the ovarian cycle. Other peripheral regulators of the HPG axis are metabolic hormones; among those, the prominent stimulatory/permissive roles of leptin, produced by the white adipose tissue (WAT), are depicted. Some of the central transmitters involved in the control of the HPG axis are also shown: predominant inhibitory transmitters are depicted in red, whereas excitatory factors are labeled in blue. Among the excitatory signals to GnRH neurons, Kiss1 neurons are highlighted. Please note that to concise presentation, discrimination between direct and indirect afferents to GnRH neurons is not made in the figure. Likewise, for sake of simplicity, some of the stimulatory and inhibitory signals to GnRH neurons are depicted in the same neurons; except for the Kiss1/NKB/Dyn neurons, this does not denote necessarily coexpression of these molecules in the same cells. Glu, glutamate; GABA, y-aminobutyric acid; EOP, endogenous opioid peptides; NE, norepinephrine; NKB, neurokinin-B; Dyn, dynorphin; RFRP, RF-related peptides. [Adapted from Roa and Tena-Sempere (377).]

Cyclic changes in hormone secretion

SCN:

Afferent – retina

Hormone transport

- Chemical properties of hormone
- Transport protein(s) bond and its significance
 - Albumin
 - Globulins
 - Specific proteins TBG, SHBG, CBG
- Bond strength
- "Alternative" binding TBG versus transthyretin

- Protection
- •Reservoir
- •Ubiquitous distribution
- •Transport across plasmatic membrane (SHBG – megalin)

DYNAMIC BALANCE BETWEEN HORMONE AND TRANSPORT PROTEIN

Hormone elimination

- Different length of time in circulation
- Metabolisation by
 - Target cells
 - Enzymatic systems in blood
 - Organs mainly liver
- Elimination
 - Liver
 - Kidneys

PHASE I

- Hydroxylation, decarboxylation
- Oxidation, reduction

PHASE II

- Glucuronidation
- Sulphatation
- Methylation
- Conjugation with glutathione

Hormones and cell response

CELL RESPONSE IS MEDIATED BY RELEVANT RECEPTORS

Receptor level of cell responseregulationActive
receptorDesensitized
receptorReceptorDesensitized
receptorReceptorAgonis

- Downregulation
- Upregulation
- Homologous desensitization
- Heterologous desensitization

Phosphorylation (specific kinases) Dephosphorylation (specific phosphatases) Modification by proteins of inhibited signaling pathway

Figure 13.10. Major mechanisms for the termination of receptor-dependent signal transduction.

Textbook of Biochemistry With Clinical Correlations, Sixth Edition, Edited by Thomas M. Devlin. Copyright © 2006 John Wiley & Sons, Inc.

Sensitisation and desensitisation of G protein-coupled proteins Synthesis • α subunit with and targeting of components **GTPase** activity Effector Receptor GDP resensitisation GTPase Receptor Receptor Arrestin and receptor activation kinase resensitization by agonist Agonist Agonist Effector Effector Receptor Receptor desensitisation GTP GDP GTP Receptor Receptor Arrestin Arrestin kinase kinase G protein activation

Hormones – proteins and peptids

"classic" hormones

Hormones produced by non-specialised cells (e.g. *adipokines*)

Paracrine/autocrine peptides

Receptors associated with plasmatic membrane

preprohormone – prohormone – hormone (+ fragments)

Peptide hormones as a part of preprohormones

Taken from Ganong, W. F. Přehled lékařské fyziologie. 20th edition. Galén 2005.

Obr. 1-22. Příklady velkých prekurzorů (preprohormonů) malých peptidových hormonů. Viz také obr. 14-12. TRH – hormon uvolňující thyrotropin; AVP – argininvazopresin, Met-enk – met-enkefalin, Leu-enk – leu-enkefalin, MSH – hormon stimulující melanocyty, ACTH – adrenokortikotropní hormon, konec – β-endorfin, Dyn – dynorfin, N-konec – neoendorfin

Ligand-gated ion channels

SECRETION OF HYPOTHALAMIC HORMONES AFTER BINDING OF CORRESPONDING TYPE OF LIGAND (NEUROTRANSMITTER)

G protein-coupled receptors (GPCR)

G protein-coupled receptors (GPCR)

End of activation and limitation of cell response

Receptor tyrosinkinases

- 58 RTKs/20 subfamilies
- Usually dimerisation after ligand binding
- ATP as a source of P for phosphorylation of intracellular domains/associated proteins
- Insulin
- IGF-1/2

Insuline receptor – genomic effects

- IRS = insulin receptor substrate
- Grb = adaptor protein (growth factor receptor-bound protein)
- SoS = Son of sevenless homologue
- Ras = small GTPase-like proteins (ability to bind GTP)
- Raf = serin/threonin-specific proteinkinases

Insulin receptor – metabolic effects

- P13K = phosphatidylinositol-3-kinase
- Akt = proteinkinase B

Receptors associated with cytosolic TK

- GH, prolactin, leptin, erythropoietin
- Dimeric receptor **without** TK activity
- Association with JAK kinase
- After ligand binding dimerisation, transphosphorylation, activation

Receptor serin/threonin kinases

- Anti-Müllerian hormone, inhibitin
- Form of dissociated heterodimer
- SMAD = "latent transcription factors"

Receptor guanylate cyklases

- Natriuretic peptides
- ANP, BNP, CNP

Signal transduction – system of second messengers

HORMONE = FIRST MESSENGER

INTRACELLULAR SIGNALING MOLECULE GENERATED AFTER HORMONE-RECEPTOR BONDING = SECOND MESSENGER

• cAMP

- TSH, glucagon, ACTH, hypothalamic hormones, ADH etc.
- Proteinkinase A
- Modulation of signaling pathways by compartmentalization (A-kinase anchoring proteins (AKAPs))

• cGMP

- ANP, BNP, CNP
- NO as a signaling molecule
 - Proteinkinase G

• DAG and IP₃

PIP₂ – phospholipase C system

EXTRACELLULAR SIGNAL MUST BE CONVERTED TO INTRACELLULAR RESPONSE

AC – cAMP system

- PKA
- CREB (cAMP-responsive element-binding protein)
- Epac (E) as an another effector molecule (exchange protein activated by cAMP)
- cyclic nucleotide gated (CNG) channels
- hyperpolarization-activated cyclic nucleotide modulated (HCN) channels
- phosphodiesterases

PLC - DAG and IP₃ system

NO as a signalling molecule - cGMP

Donald JA, Forgan LG, Cameron MS: **The evolution of nitric oxide signalling in vertebrate blood vessels**. *J Comp Physiol B-Biochem Syst Environ Physiol* 2015, 185(2):153-171.

Clinical aspects

- Syndromes of resistance to hormones (i.e. IR, IGF-1, TR β)
- Syndromes caused by CPCRs and G proteins mutations
 - ADH nephrogenic diabetes insipidus
 - ACTH familiar ACTH resistance
 - GnRH hypogonadotrophic hypogonadism
 - FSH hypergonadotrophic ovarial dysgenesis
 - LH male pseudohermaphroditism
 - Melanocortin 4 obesity
 - PTH/PTHrP Blomstrand lethal chondrodysplasia

Hormones acting through nuclear receptors

Explanation of some effects and pathologies

General mechanism of effect of hormones acting through nuclear receptors

-High affinity of ligand bond = due to R structure
-Recognition of specific promotor region
-Dimerisation of receptors (homodimers, heterodimers)
-Remodelation of chromatin for gene expression (HDAC)
-Gene expression at the end decreased or increased

WHY ONLY NUCLEAR RECEPTORS?

- -Synthesis in cytoplasm
- -Stay until ligand binding or until transport to nucleus

-Regulation mechanism – modification, count of receptors
-Important parameter – selectivity of target cells
-Tissue-specific factors, coactivators and corepressors

Nuclear receptors

-Coregulatory proteins binding(independent on ligand)- Phosphorylation sites

-DNA binding (zinc fingers)-Dimerisation-ERE, PRE, GRE, MRE, ARE

-Ligand binding (agonist, antagonist)
-Coregulatory proteins binding
(dependent on ligand)
-Dimerisation
-Nuclear translocation
-Chaperone association (HSP)

Example – steroid hormones

GTFs = general transcription factors (remodulators of chromatin)

HAT = histon acetyltransferase

Termination of hormone action

Receptor-mediated endocytosis and subsequent lysosome degradation

Phosphorylation/ dephosphorylation of receptor or proteins of signaling pathway

Ubiquitination and proteosomal degradation

Binding of regulatory factor on corresponding protein (enzyme)

Inner enzymatic activity and its regulation

Clinical aspects

- Hormone overproduction
- Hormone underproduction
- Changes in sensitivity of target tissues and/or change in cell response
- Higher rate of inactivation or degradation of hormones
- Insufficient production or higher degradation of transport proteins
- Changes of transport hormones production during physiological conditions (pregnancy)

Clinical aspects

Source: Molina PE: Endocrine Physiology, 4th Edition: www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved. Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

- Decreased number of receptors
- Decreased concentration of hormone-activating enzyme(s)
- Increased concentration of non-competitive inhibitor
- Decreased number of target cells

- Decreased affinity of hormone to receptor
- Decreased number of receptors
- Increased rate of hormone degradation
- Increased concentration of antagonists/competitive inhibitors

Determination of hormone levels in blood

-HIGH SENSITIVITY DEMANDS -WIDE CONCENTRATION RANGE

Antigen-antibody interaction-based methods -Anibody requirements (poly- X monoclonal) -Monoclonal antibodies = specific epitopes -Radioactive labeled antibodies -Necessity of quantification! -RIA, ELISA

Methods based on HPLC-MS

Nucleic acid-based methods

- -hybridization techniques
- -restriction fragmentation, electrophoresis, sequencing

Separation techniques – free X bound hormones

- dialysis

EXTREMELY LOW LEVELS OF HORMONES IN BLOOD

RIA = radioimmunoassay

Antibody affinity = $K_1/K_{-1} = [AbAg]/[Ab][Ag]$

HPLC-MS

