

Cellular base of nervous system

Cellular base of nervous system

- Neuronal cells
 - Reception, integration and propagation of information
 - Unique, irreplaceable
- Neuroglial cells
 - Support for neuronal cells
 - Easily replacable

Cellular base of nervous system

- Neuronal cells
 - Reception, integration and propagation of information
 - Unique, irreplaceable
- Neuroglial cells
 - Support for neuronal cells
 - Easily replacable
- The total amount of neuronal cells 100 billions (10¹¹)
- Neruon/glia ratio
 - 1/10 50 (Principles of Neural Science, 4th ed., 2012)
 - 1/2 10 (Principles of Neural Science, 5th ed., 2012)
 - 1/1 (Nolte's Human Brain, 7th ed., 2015)

Neuron

Maintain Activity

https://upload.wikimedia.org/wikipedia/commons/e/ed/Neuron_Cell_Body.png

Maintain Activity

Maintain Activity

Fast axonal transport

- bidirectional
- ATP dependant
- associated with microtubules: dynein and kinesin

Fast axonal transport

Golgi derived vesicles lysosmes, mitochondria structural elements of endoplasmic reticulum

Slow axonal transport

- unidirectional,
- ATP independant
- conducted by sliding, polimerizing and protein interacting

Slow axonal transport

microfilaments, microtubules neurofilaments cytosolic protein complexes

http://www.oapublishinglondon.com/images/article/pdf/1397255957.pdf

Membrane potential

• Due to differences in the concentrations of ions on opposite sides of a cellular membrane

http://www.slideshare.net/drpsdeb/presentations

Resting membrane potential of a neuron

http://assassinscreed.ubi.com

- Highly instable state of membrane
- Why? Speed!
- Brain sonsumption

✓ Oxygen - 20% of total body consumption
 ✓ Glucose - 25% of total body consumption

Action potential

- Quick voltage change on the membrane
- Spreads along the axon
- All or nothing principle

http://www.slideshare.net/drpsdeb/presentations

Action potential spreading

- Local currents
- Anterograde

Saltatory conduction

Myelin sheath

Axoplasm

Node of Ranvier

- Myelin sheat
- Nodes of ranvier
- Economy
- Speed of conduction
- Speed of conduction also dependent of nerve fibre diameter
 - the electrical resistance is inversly proportional to area of cross-section

Classification of nerve fibers

- In humans mostly myelinated
- All fibers are myelinated in CNS
- Non-myelinated are evolutionary old ones

Neuronal classification

Basis for classification	Example	Functional implication	Structure
3. Number of processes			
One process exits the cell body	Unipolar neuron (dorsal root ganglion cell)	Small area for receiving synaptic input: highly specialized function	Unipolar
Two processes exit the cell body	Bipolar neuron (retinal bipolar cell)	Small area for receiving synaptic input: highly specialized function	Bipolar
Many processes exit the cell body	Multipolar neuron (spinal motor neuron)	Large area for receiving synaptic input; determines the pattern of incoming axons that can interact with the cell	Multipolar

Neuronal classification

Basis for classification	Example	Functional implication	Structure
2. Dendritic pattern			Pyramidal cell
Pyramid-shaped spread of dendrites	Pyramidal cell (hippocampal pyramidal neuron)	Large area for receiving synaptic input; determines the pattern of incoming axons that can interact with the cell (i.e., pyramid-shaped)	XE E
Radial-shaped spread of dendrites	Stellate cell (cortical stellate cell)	Large area for receiving synaptic input; determines pattern of incoming axons that can interact with the cell (i.e., star-shaped)	Stellate cell

http://www.slideshare.net/CsillaEgri/presentations

Neuronal classification

Basis for classification	Example	Functional implication	Structure
1. Axonal projection Goes to a distant brain area	Projection neuron or Principal neuron or Golgi type I cell (cortical motor neuron)	Affects different brain areas	Dorsal root ganglion cell
Stays in a local brain area	Intrinsic neuron or Interneuron or Golgi type II cell (cortical inhibitory neuron)	Affects only nearby neurons	Retinal bipolar cell

http://www.slideshare.net/CsillaEgri/presentations

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune function

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune function
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining

(liquro-encephalic barrier)

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune function
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining

(liquro-encephalic barrier)

Peripheral nervous system

- Satelite cells
 - Support functions in PNS

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune function
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining

(liquro-encephalic barrier)

Peripheral nervous system

- Satelite cells
 - Support functions in PNS
- Schwan cells
 - Myelin sheat

Compartmentalization

- Cellular specialization leads to compartmentalization on several levels
 - Tissue level
 - Organ level
 - Organ system level
- There are barriers in between compartments
- Properties/content may vary among different compartments

Cellular base of nervous system

The brain homeostasis is maintained within a narrow range thanks to hematoencephalic barrier and astrocyte activity

Cellular base of nervous system

The brain homeostasis is maintained within a narrow range thanks to hematoencephalic barrier and astrocyte activity

This allows neuronal cells to live for the entire life of the individual

Intracranial compartment

- Brain
- Cerebrospinal fluid
- Blood (intravasculary)
- **Barriers**
 - Meningeal
 - Hematoliquor
 - Hematoencephalic

sinus

space

http://www.corpshumain.ca/en/Cerveau3 en.php

Meningeal and hematoliquor barrier

Adopted from: M.H.Ross and W. Pawlina. Histology: a text and atlas, Lippincott Williams & Wilkins, 2011

- Clear fluid produced by active secretion
- Liquor space
 - lined by ependymal cells
 - ≻ 150-250 ml

http://www.control.tfe.umu.se

- Clear fluidproduced by active secretion
- Liquor space
 - lined by ependymal cells
 150-250 ml
- Production
 - ✓ Plexus choroideus (PCh) -70%
 - ✓ Cell metabolism
 - ✓ Cappilary filtration
 - ➢ 450-750 ml/day
- Resorbtion
 - ✓ Archnoid granulations (AG)

http://www.control.tfe.umu.se

- Content
 - ✓ High levels of Mg^+ and Na^+
 - ✓ Low levels of K^+ and Ca^{2+}
 - ✓ Almost no cells (max 5/ml)

http://www.control.tfe.umu.se

- Content
 - ✓ High levels of Mg^+ and Na^+
 - ✓ Low levels of K^+ and Ca^{2+}
 - ✓ Almost no cells (max 5/ml)
- Function
 - ✓ Protection
 - ✓ Microenvironment of neurons and glia
 - Metabolic function
 - Immunologic function
 - Transport function and so on

http://www.control.tfe.umu.se

New insight into the production and resorbtion of CSF

- CSF cerebrospinal fluid
 - ISF interstitial fluid
- VRS Virchow Robin space (space between the pia mater and an artery or a vein, but not capillaries)

Ducros A, Biousse V. Headache arising from idiopathic changes in CSF pressure. *The Neurology*. 2015;14:655–668.

Hematoencephalic barrier

- Highly organised structure
 - Endothelial cells (low permeability thanks to zonlua occludens)
 - Lamina basalis
 - Astrocytes

Hematoencephalic barrier

Junction between Endothelial cells

FSM (basic artwork: wikimedia commons)

Cross section of blood vessel

Longitudinal section of blood vessel

Circumventricular organs

- Rich vascularisation
- Modified hematoencephalic barrier
- Sensors
- Secretion

The circumventricular organs

http://www.neuros.org/index.php?option=com_photos&view=photos&oid=hafizbilal

Intracranial compartment

- Brain
- Cerebrospinal fluid
- Blood (intravasculary)
- Intracranial pressure (ICP)
- Cerebral perfusion pressure (CPP) pressure gradient driving blood flow intracranialy

Cerebral perfusion pressure

Intracranial pressure

Mean arterial pressure

CPP = MAP - ICP