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Bayes’ theorem

Conditional Probability: Bayes’ Theorem

P(A|B) =

P(B|A) P(A)

P(B)
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Bayes’ theorem
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Bayes' theorem

P(B[A)P(A)
P(AIB) =~

Prior




Bayes’ theorem

The normal Bayes' theorem
equation, where we chose a
case A (called A i)

P(B|Ai)P(4;) P(B|4;)P(A;)

W= ="pB) [ [E5 PBIA P

A, ... A,
Here we sum over each case, so
When A has 1to n cases, The normal Bayes' theorem there is n cases and we start at j,
and we choose some case equation where we chose a that is, we start at case 1 ) then
i to find the probablllty of Case, A (Ca”ed A |) case 2’ all the way to case n

P(
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Bayes’ theorem - example

* You might be interested in finding out a patient’s probability of having liver
disease if they are an alcoholic.
— Past data tells you that 10% of patients entering your clinic have liver disease. P(A) = 0.10.
— Five percent of the clinic’s patients are alcoholics.
— Among those patients diagnosed with liver disease, 7% are alcoholics.

P(B|A) - P(A)

P(A|B) = PE)

EPCEITEC




Bayes’ theorem - example

* You might be interested in finding out a patient’s probability of having liver
disease if they are an alcoholic.
— Past data tells you that 10% of patients entering your clinic have liver disease. P(A) = 0.10.
— Five percent of the clinic’s patients are alcoholics.
— Among those patients diagnosed with liver disease, 7% are alcoholics.

P(B|A) - P(A)

P(A|B) = PE)

- P(A|B) =(0.07*0.1)/0.05=0.14

* If the patient is an alcoholic, their chances of having liver disease is 0.14 (14%).
This is a large increase from the 10% suggested by past data.
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Bayes’ theorem - example

- What is the probability that a woman has cancer if she has a positive
mammogram result?
— One in 1000 of women have breast cancer.
— 98 percent of women who have breast cancer test positive on mammograms.
— 1 percent of women without breast cancer have a positive mammogram.

P(B|A) -P(A)

P(A|B) = P(B|A) -P(A) + P(B| -A) - P(-A)
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Bayes’ theorem - example

- What is the probability that a woman has cancer if she has a positive
mammogram result?
— One in 1000 of women have breast cancer.
— 98 percent of women who have breast cancer test positive on mammograms.
— 1 percent of women without breast cancer have a positive mammogram.

P(B|A) - P(A)
P(B|A) -P(A) + P(B| —A) - P(-A)
- P(A)=0.001, P(-A)=0.999, P(B|A)=0.98,P(B|-A)=0.01
* (0.98 * 0.001)/((0.98 * 0.001) + (0.01 * 0.999)) = 0.0893
* The probability of a woman having cancer, given a positive test result, is ~9%.

P(A|B) =
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Bayes’ theorem - applications

- Bayesian statistics
— Data modeling
— Parameter estimation

- Bayesian networks
— Naive Bayesian classifier
— Dynamic Bayesian networks
* Hidden markov models

« Can be used in many different context
— Neural networks
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Bayesian statistics

- Bayesian statistical methods use Bayes' theorem to compute and update
probabilities after obtaining new data.

P(B|A)P(A)
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Probability density function

= |jkelihood, P(Y/x)
= Prior, P(x)
=== Posterior, P(x/Y)

Parameter 'x'
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Bayesian vs. frequentists statistics

- Bayesian interpretation of

probability where probability expresses a degree of
belief in an event

* |In the Bayesian view, a probability is assigned to a
hypothesis, whereas under frequentist inference, a

hypothesis is typically tested without being assigned a
probability.

« The frequentist interpretation that views probability as

the limit of the relative frequency of an event after many
trials
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Bayesian vs. frequentists statistics

« Two main sticking points
— Prior believe
— Small amount of data situations
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Bayesian statistics — parameter estimation

» Data from some probability distribution function (PDF)
* The goal is to get PDF of the parameter of this function
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PDF estimation with sampling

 Impossible (very hard) to compute analytically
« Markov chain Monte Carlo (MCMC)

— This allowed usage of Bayesian statistics
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PDF estimation with sampling

* Impossible (very hard) to compute analytically
« Markov chain Monte Carlo (MCMC)

— This allowed usage of Bayesian statistics

Posterior

= | M=0.623,0.385; N=1000

o
2
S
=

0.0 02 04

06 0.8
EPCEITEC

16




Bayesian statistics - example

« Student t-test

normal ; normal
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Bayesian statistics — Generalized linear model

Y =Bg + ByXxg + Boxs y =sig(Bg + B4Xx; + Boxs )
y ~N(m,sd=2), m =10+ 1x; + 2Xo

y ~ dbern(m), m = sig(1(0.66x; + 0.0096x, - 45))
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Bayesian statistics — Generalized linear model

metric identity normal

dichotomous logistic Bernoulli

ordinal thresholded cumulative categorical
normal

count exponential Poisson
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Bayesian statistics — Generalized linear model

Response variable type Explenatory variable type Example test type

Categorical Categorical Fisher test
Categorical (two groups) Continuous t-test

Categorical (multiple groups) Continuous ANOVA
Continuous Continuous Linear regression
Continuous Categorical (two groups) Logistic regression
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Bayesian statistics — hierarchical models
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Bayesian networks

» Diracted acyclic probabilistic graph
« Represents a set of variables and their conditional dependencies

P(C=T) P(C=F)
0,5 0,5
X

€ | P(R=T) P(R=F)
T 0,8 0,2
/ F 0,2 0,8

i o

R | H(W=T) P(W=F)
T 0,99 0,01
E 0,9 01
T 0,9 0,1
F 0,0 1,0

¢ |P(s=T) p(s=F) \
T ‘ 0,1 0,9
Bles 08 WetGrass

EPCEITEC

nm- |0

22




Bayesian networks - example

P(E5)

CPT(E4|C,E5,E7)

P(E6) P(E7)

CPT(E3|C,E7)

CPT(C|E5,ES)
CPT(E2|C)

CPT(E1|C,E6)
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Dynamic Bayesian networks

» Hidden markov models (hmm) are a (simple) special case of DBN
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Naive Bayesian Classifier

The normal Bayes' theorem
equation, where we chose a
case A (called A i)

1B) - P(B|A;)P(A;) | | P(B|A;)P(A;)
N P(B) - Do P(BJA)P(A;)|

2

P(

Ay, . A,

Here we sum over each case, so

When A has 1 to n cases, The normal Bayes' theorem there is n cases and we start at j,
and we choose some case equation, where we chose a that is, we start at case 1, then
I'to find the probability of case A (called A i) case 2, all the way to case n
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Naive Bayesian Classifier — simple example

CPT(E4|C)

CPT(E3|C) -

CPT(E2|C)

CPT(E1|C)
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Naive Bayes classifiers - properties

* highly scalable, requiring number of parameters linear in the number of variables
— curse of dimensionality

» training can be done by evaluating a closed-form expression which takes linear
time

« Assumption of independence
— Simple model

 Successfully being used
 Best if you have poor understanding of the problem.
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Naive Bayesian Classifier - example

* Pancreatic tumor classification based on miRNA levels

* miRNA sequencing from plasma samples
— ~300 miRNAs

» Select ~20 miRNAs to classify tumor types

» Bayesian model - 24 miRNAs -> 85% success rate
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