

Overview of Muscle Relaxants

Mechanism of action

Centrally active

Peripherally active

- Baclofen
- Benzodiazepines:
 - Tetrazepam
 - Diazepam
 - Clonazepam
- Thiocolchicoside
- Mephenoxalone
- Tizanidine
- Guaifenesin
- Orphenadrine

- Presynaptically active: botulinum toxin
- Postsynaptically active:
 - Depolarizing blocking agents (suxamethonium)
 - Non-depolarizing blocking agents (atracurium, vecuronium, pancuronium etc.)

Centrally Active Agents

- Attenuate transmission of motoric impulses in spinal cord and CNS
- Decrease muscle tone, do not influence intentional contractions → weaker muscle relaxant activity
- AE: depression of CNS → sedation, somnolence, confusion...
- Acute and chronic painful spasms p.o., parenterally
 - Spastic rheumatism
 - Damage of *n. ischiadicus* (spasms of deep paravertebral muscles, compressions in intervertebral space etc.)
 - Spastic disorders associated with cerebral palsy, multiple sclerosis, injuries of brain or spine...

Centrally Active Agents

Mechanism of action:

Increase effects of inhibitory neurotransmitter
 γ-aminobutyric acid (GABA) in CNS and spine cord

Baclofen

- Attenuates the activation of motor neurons in the spine cord
- GABA_B receptor agonist
- Multiple sclerosis, cerebral palsy, injuries of brain and spinal cord...

Centrally Active Agents

- Baclofen
- Benzodiazepines: ———
 - Tetrazepam
 - Diazepam
 - Clonazepam
- Thiocolchicoside
- Mephenoxalone
- Tizanidine
- Guaifenesin
- Orphenadrine

MoA: Enhance of GABAergic transmission – GABA_A receptors

Psychiatric medication with 5 effects:

Anxiolytic Hypnotic

Muscle relaxant

Anticonvulsant Amnestic

Low doses have expectorant effect, Higher doses have muscle relaxant and anxiolytic effect

Overview of Muscle Relaxants

Mechanism of action

Centrally active

Peripherally active

- Baclofen
- Benzodiazepines:
 - Tetrazepam
 - Diazepam
 - Clonazepam
- Thiocolchicoside
- Mephenoxalone
- Tizanidine
- Guaifenesin
- Orphenadrine

- Presynaptically active: botulinum toxin
- Postsynaptically active:
 - Depolarizing blocking agents (suxamethonium)
 - Non-depolarizing blocking agents (atracurium, vecuronium, pancuronium etc.)

Peripherally Active Agents

- 1.) Presynaptically active agents
 - Decrease ACh release
 - Botulinum toxin
- 2.) Postsynaptically active agents
 - Act on nicotinic receptors (N_M)
 - Non-depolarizing
 - Depolarizing

Non-depolarizing agents

- Firstly described in 15th century by european explorers in S. America
- Used by natives as arrow poisons
- Tubocurarine natural alkaloid

- Competitive N_M receptors antagonists
- AE: release of histamine (bronchoconstriction, hypotension, syncope – fainting)
- Progressive relaxation: eye muscles → muscles of mastication → neck and limbs → trunk → diaphragm
- Administered parenterally
- Effect weakens and is reversible competition of receptors

Non-depolarizing Agents

- With long effect (1-2 h): tubocurarine, pancuronium, pipecuronium, vecuronium
- With short efect (10-30 min): alcuronium, atracurium
- Surgery muscle relaxation in the operating field, or before mechanical ventilation (tracheal intubation)
- Ovedosing: antidote = acetylcholinesterase inhibitors (neostigmine, pyridostigmine...)

Depolarizing Agents

- N_M receptor agonists
- Open Na⁺ channels → cause long-term depolarization → resistancy to activation by ACh = depolarization blockade
- Remain on the receptor for a longer time, resistant to AChE
- Fasciculation (muscle twitches)
 - → muscle relaxation (paralysis)
- AE: cardiac arrhythmias, hyperkalemia, increase of intraocular pressure (IOP)
 - + malignant hyperthermia!

Depolarizing Agents

- Decamethonium
- Suxamethonium (succinylcholine)
 - Short-term muscle relaxation (3-5 min)
 - Mechanical ventilation (tracheal intubation)
 - Orthopedic manipulations repositiong of dislocated joint, fractures

Malignant Hyperthermia

Rare AE of depolarizing MR and/or volatile general anesthetics

Mechanisms:

- Defect of RYR receptor controls release of Ca²⁺ from sarcoplasmic reticulum
- Increase of Ca²⁺ in myocyte → uncontrolled increase of contractions, aerobic/anaerobic metabolism
- Symptoms: hyperthermia, cramps and rigidity,
 † heart rate and breathing, cyanosis, lactate acidosis, rhabdomyolysis...
- 60 % of untreated cases are lethal (5 % of treated)
- Therapy: dantrolene, intensive cooling

Dantrolene

- Peripherally active muscle relaxant
- Blocks the release of Ca²⁺ from sarcoplasmic reticulum by interaction with RYR
- Do not affect smooth muscle and myocardium
- Malignant hyperthermia
- Spastic disorders associated with spinal cord injury, stroke, cerebral palsy and multiple sclerosis
 - Advantage: no CNS depression