NSAIDs, Antipyretics, Antigout drugs

- Analgesics-antipyretics (A-A) drugs against fever and pain
- Nonsteroidal antiinflammatory drugs (NSAIDs) - against inflammation, fever and pain

A-A and NSAIDs overlap partially

• Antigout drugs – gout therapy

Mechanism of action

- all of them have similar mechanism of action-inhibition of eicosanoids synthesis (with higher or lower selectivity and strength)
- NSAIDs differ in the strength of COX1/COX2 inhibition and the incidence of typical AE (ulcer disease, bleeding)

Cyclooxygenases

- COX-1 constitutive prostanoids involved in physiological processes (gastroprotective effects, platelet activities)
- COX-2 inducible activity enhanced by proinflammatory factors (IL-1, IL-2, TNF-α, oncogenes,..)

– prostanoids \rightarrow inflammation, fever, pain

• **COX-3** ? – central mechanism of analgesic and antipyretic effect (localization: heart + CNS)

Classification by COX1/COX2 inhibition

- 1. <u>Nonspecific inhibitors</u>
 - ASA, ibuprofen, diclofenac, ...
- 2. <u>Preferential inhibitors of COX-2</u>
 - meloxicam, nimesulid
- 3. Specific inhibitors of COX-2
 - coxibs

Classification

- 1. Salicylic acid derivatives
- 2. Aniline derivatives
- 3. Propionic acid derivatives
- 4. Pyrazolones
- 5. Acetic acid derivatives
- 6. Oxicams
- 7. Coxibs
- 8. Other

1. Salicylates

Effects:

- analgesic
- antiinflammatory
- antipyretic
- antirheumatic
- antiaggregation \rightarrow inhibition of platelet function

Salicylic acid derivatives – drugs

NSAIDs:

- ASA (acetylsalicylic acid)
- sodium salicylate
- cholinsalicylate

Therapy of inflammatory bowel desease:

• sulfasalazine

 \rightarrow sulfapyridine + 5-aminosalicylic acid

• mesalazine

Acetylsalicylic acid

- efficiency standard of AA and NSAIDs
- selective inhibitor of COX1 (100-200:1)
- irreversible acetylation of COX-1 active centre
- pharmacokinetics:
 - weak acid, complete and rapid absorption in stomach and proximal part of intestine
 - **salicylic acid (SA)** is product of metabolisation
 - $T_{1/2}$ ASA 15-20 min, $T_{1/2}$ SA 30 hrs depending to dose
 - 80-95% binding to plasma proteins, elimination and exkretion via kidneys
 - higher doses risk of cumulation in a body

Usual dosages

- antipyretic **500 mg**
- analgesic **500 mg (4 6 hrs)**
- anti-phlogistic, -rheumatic, -uratic **3,6 4 g/day**
- antiaggregative **30 100 mg**
- total daily dose **4 g/day**

ASA – adverse effects

- salicylism (¹d.) hearing impairment, tinnitus, deafness, vertigo
- **allergy** itching, rash, anaphylaxis,...
- aspirin-induced asthma [↑]LT
- **GIT** nausea, dyspepsia, bleeding, ulcer disease
- "analgetic" nephropathy reversible decrease of glomerular filtration
- increased bleeding

CAVE

- pregnancy- differs in trimesters
- children- Rey's syndrome
- elders- more sensitive to AE

ASA interactions

- anticoagulants
- **NSAIDs** and other analgesics (except of opioids)
- other
 - valproate, sulfonylureas competition on plasma proteins – increase of efficacy
 - SSRI potentiate ASA antiaggregative effect (citalopram, fluoxetine)
 - glucocorticoids decrease ASA plasma levels, but increase the risk of GIT bleeding and ulceration

ASA - contraindications

- hemophilia and other diseases influencing blood coagulation
- administration prior to surgery
- gastroduodenal ulcers, gastritis
- children to 12 years
 - Rey's syndrome (hyperpyrexia, acidosis, seizures, vomiting, psichiatric disorders, hepatopathy)
- pregnancy (only temporary)
- asthma, allergy, nasal polyps

2. Aniline derivatives

Paracetamol (=acetaminophen)

- analgesic, antipyretic, **is not antiinflammatory active**
- does not influence blood coagulation or uric acid levels
- mechanism of action is unclear:
 - central mechanism due to COX-3 inhibition
 - indirect effect on 5-HT₃ spinal receptors
 - elevates PGG₂ to PGH₂ conversion in peripheral tissues
 - influencing the endocannabinoid and vanillin system and Ca²⁺ channels

Usual doses

- comparable effect to ASA, but better tolerance
- drug of choice to ↓ fever and pain in children younger than 12 years
- pain in adults
 - 300 to 500 mg every 3-4 hrs
 - 650 mg every 4 to 6 hrs
 - 1000 mg every 6 hrs
- total daily dose up to 4 g

Pharmacokinetics:

- p.o. good absorbtion, maximum in 30-60 min, low plasma protein binding, hepatic metabolism
- production of hepatotoxic mtb. binding to gluthathione
- overdose $(10 15 \text{ g}) \rightarrow$ antidote **N-acetylcysteine**

AE, CI:

- allergy
- comorbidities:
 - alcohol addiction
 - nephropathy
 - hepatopathy

3. Pyrazolones

Propyphenazone

- in combinations (with paracetamole and caffein)
- **AE:** GIT intolerations, rash, bronchospasm, hematopoetic disorders

Metamizole

- analgetic, antipyretic + spasmolytics effect
- combined with spasmolytics (pitofenone, fenpiverine)
- **AE:** rare but serious the most serious are agranulocytosis and pancytopenia

4. Propionic acid derivatives

Ibuprofen

- good analgesic and antiinflammatory effect
- used often for acute pain therapy
- low AE incidence, well tolerated NSAID, indicated for children

Ketoprofen

• phototoxicity

Dexketoprofen

4. Propionic acid derivatives

Naproxen

- longer T_{1/2} (12-15 hrs)
- low gastro- and cardiovascular toxicity compared to other NSAIDs

Tiaprofenic acid

• good penetration to synovial fluid \rightarrow joints diseases

Flurbiprofen

5. Acetic acid derivatives

Diclophenac

- antiinflammatory, analgesic, weak antipyretic ef.
- bioavailability 30-70%
- short biological halftime \rightarrow retarded DDF
- more AE than ASA, less than indomethacin
 - mild: cephalgia, insomnia, GIT disorders, photosensitivity
 - significant risk of cardiovascular AE

Aceclofenac

5. Acetic acid derivatives

Indomethacin

- very strong nonselective COX inhibitor
- toxic \rightarrow short-time treatment of acute states
- urikosuric effects \rightarrow used in gout attacks
- AE in 30 % of pacients
 - GIT, cephalgia, depression, confusion, hallucinations, hematoxicity, cartilages destruction

6. Oxicams

- high plasma protein binding (interactions!)
- long biological halftime (once daily dosing)
- different COX affinity

Meloxicam

- COX-2 more selective
- lower AE incidence

Locnoxicam

- nonselective COX inhibitor
- low occurence of GIT adverse effect

Piroxicam

• nonselective COX inhibitor, high toxicity

7. Coxibs

- 100 x more selective to COX-2 (**specific** COX-2 inhibitors)
 - lower AE in GIT
 - do not influence thrombocyte aggregation or renal perfusion
- good analgesic effect, not suitable for treatment of acute or transient pain → effect is progressing slowly
- prescription and indication restrictions
- I: osteoarthritis, rheumatoid arthritis, ankylosing spondylitis
- **AE:** increase of thrombembolisms (myocardial infarction, strokes) after chronic use

7. Coxibs

Celecoxib Parecoxib – only inj. Etoricoxib

Pharmacokinetics:

- after p.o. administration good absorption from GIT, but not too fast, max levels reach in 2-4 hours
- fat diet slows down absorption

8. Other

Nimesulide

- preferential inhibitor of COX-2
- inhibits enzymes destroys cartilage (elastases, collagenases), due to occurrence of AE, indication of treatment of painful osteoarthritis has been taken
- is not the first choice medicine in any of indications
- **PK:** lipophilic, short elimination half-life (1,5-5 hrs), analgesia up to 12 hrs
- **AE:** hepatotoxicity (max duration of therapy 15 days)

Adverse effects

- because of COX-1 inhibition:
 - GIT \downarrow cytoprotective PGE₂, PGI₂ \Rightarrow erosions, ulcerations
 - thrombocytes ↓ TXA₂: inhibition of thrombocytes aggregation
 ⇒ increased bleeding
 - PGE₂, PGI₂ regulation of renal functions
 ⇒ renal failure
 - − ↑ LT production induces in predisposed people bronchoconstriction

 ⇒ asthma attack
 - uterus ↓ PGE/F: inhibition of constriction
 ⇒ prolongation and complications during delivery
- coxibs:
 - thromboembolic cardiovascular and cerebrovascular complications

Prevention of AE

- dose reduction or DDF change
- combination with protective drugs
 - proton pump inhibitors (lansoprazole, omeprazole)
 - prostaglandine analogues (misoprostol)
 - H₂ antihistamines (ranitidine, famotidine)
- think about preferential or specific COX-2 inhibitors

NSAIDs for local aplication

- ketoprofen, ibuprofen, naproxen, indomethacin, diclophenac, nimesulide, piroxicam
- flurbiprofen (lozenges), choline salicylate (oral gel)
- **DDF:** creams, gels, solutions (sprays), patches, lozenges
- AE: hypersensitivity reaction, phototoxic reaction

NSAIDs interactions - examples

Depends on particular drug (SPC), generally:

- Anticoagulants + antiaggregants:
 - plasma protein: displacement from binding and increased free fraction (warfarin)
 - increased of antiaggregation effect (clopidogrel, ticlopidin)
- **SSRI:** \uparrow risk of bleeding in GIT
- **Sulfonylureas:** \uparrow of hypoglycaemic effect
- **Glucocorticoids:** \uparrow GIT toxicity
- **Antihypertensives:** [↑] BP about 10 mmHg, neprhrotoxicity (ACEi)
- Antiuratics: reducing their effect
- **Gingko biloba extract:** \uparrow risk of bleeding
- **Methotrexate:** \uparrow toxicity of mtx
 - reduced renal clearance of mtx
 - displacement from binding to plasma protein and increased free fraction

Treatment of gout

Drugs

- 1. Acute gout attack
 - strong anti-inflammatory action
 - pain-killers
 - inhibition of leucocyte migration to the joint
- 2. Hyperuricemia therapy / prevention of gout attack
 - increase of uric acid excretion
 - block of synthesis
 - + diet

Treatment of acute gout attack

NSAIDs

- higher doses (i.m., p.o., p.r.)
- some have preferably uricosuric effect
- indometacine, diclofenac, piroxicam

• colchicine

- alcaloid obtained from Colchicum autumnale
- p.o. every 2-4 hrs
- mitotic poison, inhibits phagocytosis and leukocyte migration
- AE: severe diarrhea rehydratation!

- glucocorticoids
 - local adm. (i.a.) –
 triamcinolone
 - systemic (p.o., i.m., i.v.) –
 prednison,
 methylprednisolon
- canakinumab
 - IL-1 inhibitor, human monoclonal antibody
 - patients who do not tolerate
 NSAIDs and GC
 - s.c. aplication

Chronic treatment of gout

1. Uricosurics

• inhibit reabsorption of uric acid in primary tubulus

Lesinurad

• only in combination with xantin oxidase inhibitors

Probenecide

- sometimes used with antibiotics or antivirotics to make them stay longer in the body
- Not registered in Czech Rep.

2. Antiuratics

• inhibit syntesis of urine acid by inhibition xantin oxidase (XO)

Allopurinol

- isomer of hypoxanthin, competitive inhibition of xanthin oxidase
- inhibits *de novo* syntesis of purines
- not combine with cytostatics of purine structure (azathioprin, 6mercaptopurin) – allopurinol 1 their toxicity!
- **AE:** usually well tolerated, most common:
- rash, GIT intoleration, hypersensitive reaction

Febuxostat

- **MA:** non-purine inhibitor of xantinoxidase
- clinical trials proved higher efficacy than allopurinol
- **AE:** gout attacts, liver function abnormalities, diarrhoea, nausea, headache

Pegloticase (recombinant uricase)

- MA: transforms uric acid to alantoin with better solubility
- **AE:** anaphylactic shock, reaction to infusion, gout attacts at the beginning of therapy
- i.v. aplication (only to inpatient)

Gout – problematic drugs

- Low dose of ASA
- Diuretics
- Beta Blockers
- ACEi
- Immunosuppressives
- Cytostatics
- Levodopa
- ...