
PHARMACOLOGY OF PERIPHERAL NERVOUS SYSTEM

AUTONOMIC NERVOUS SYSTEM

Autonomic nervous system

SYMPATHETIC NERVOUS SYSTEM PARASYMPATHETIC NERVOUS SYSTEM

Peripheral nervous system:

- ⇒autonomic nervous system (ANS)
- ⇒enteric NS
- ⇒<u>somatic</u> efferent (motoric) system
- ⇒senzoric (afferent) fibers

ANS – mediated the transfer of the impulses between the central nervous system (CNS) and the effector tissues; independent of the control of the will (smooth muscle, myocardium, exocrine glands, etc.), adapts the response of the organism to changes of the external and internal environment

Somatic efferent (motoric) system - converts impulses from the CNS to the will of controlled skeletal muscles

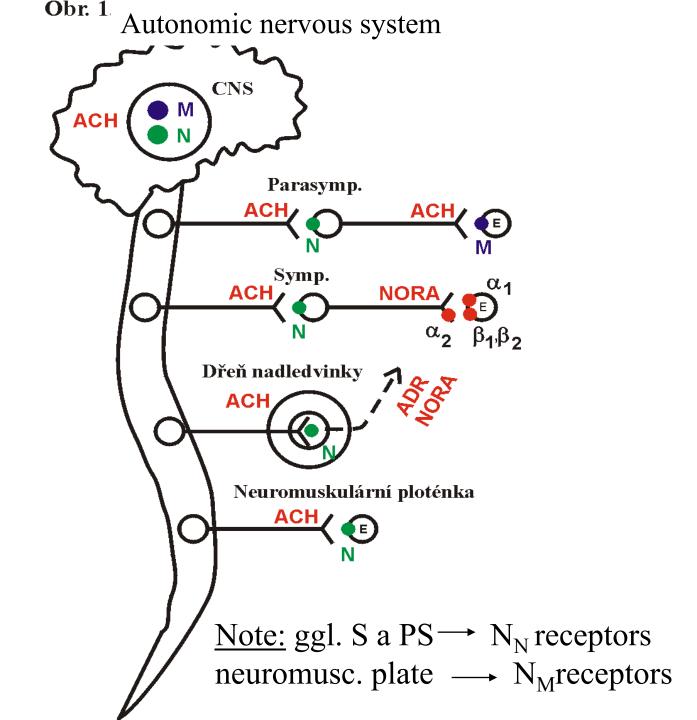
Main functions of ANS

- contractions and relaxations of smooth muscles
- function of all exocrine and some of endocrine glands
- heart functions
- metabolic functions

ANS

Sympathetic

- = adrenergnic system
- thoracolumbal s.
- fight or flight
- noradrenaline(NA)
- α a ß receptors

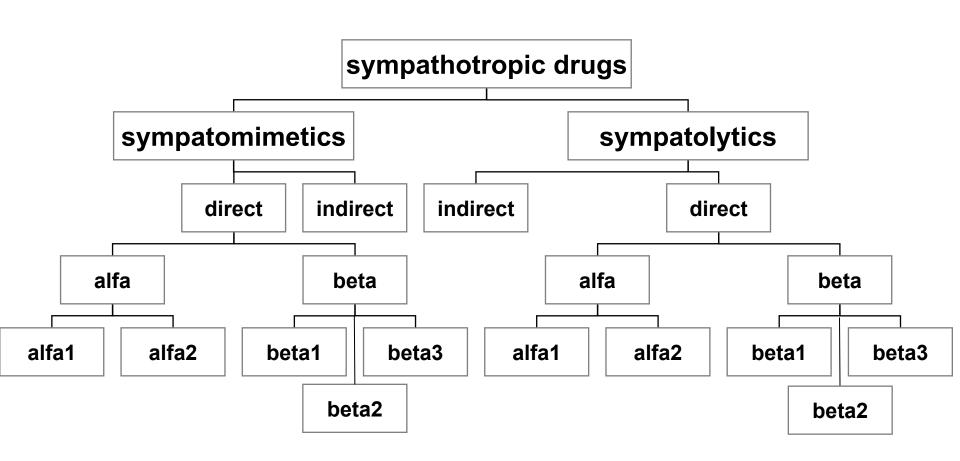

Parasympathetic

- = cholinergnic system
- craniosacral s.
- rest and digest
- acetylcholine
- N a M receptors

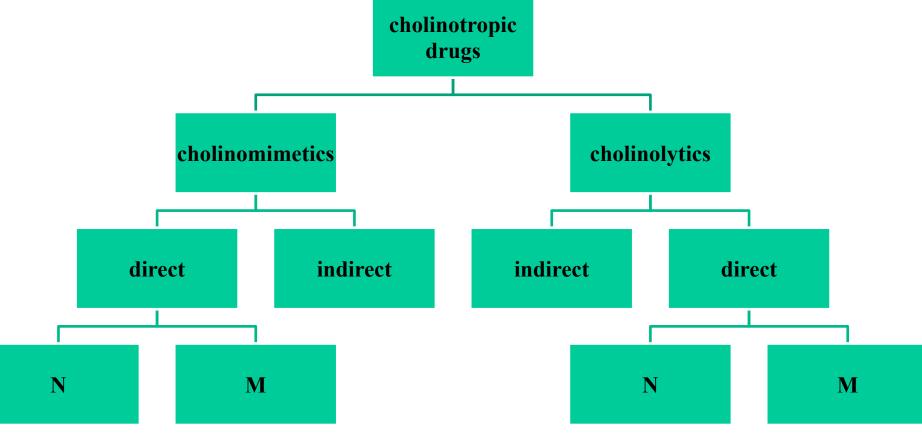
Autonomic nervous system

The activity is mutually regulated

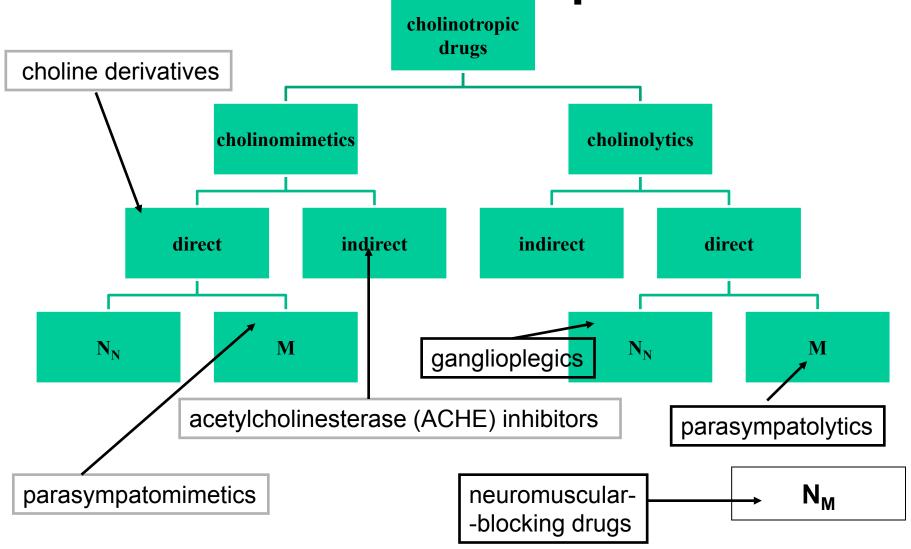
- heterotropic interactions
- homotropic interactions
- most of visceral organs is inervated by both S and PS
- opposite activity bronchi, heart, bladder,,...
- similar action salivary glands
- only S blood vessels



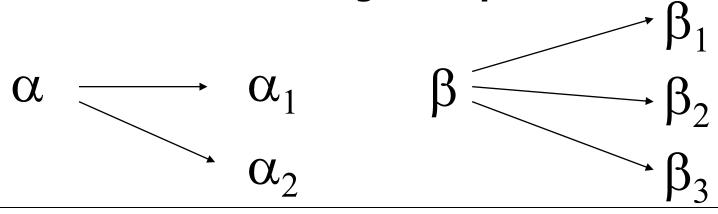
Autonomic acting pharmaceuticals


On the basis of mechanism of action - drugs:

- 1. **binding to the receptors** for Ach or NA:
 - a) starting reaction = agonist DIRECT MIMETICS
 - b) receptor blockade = antagonist DIRECT LYTICS
- ••••••
- 2. changing the synaptic concentration of NT intervene in the fate of the Ach or NA (affect the synthesis, storage, release from nerve endings, inactivation); do not bind directly to receptors on the effector organs
 - a) increase of NT effect = **INDIRECT MIMETICS**
 - b) decrease of NT effect = INDIRECT LYTICS


Vegetative acting drugs 2. sympatotropic

Vegetative acting drugs 2. cholinotropic



Vegetative acting drugs 2. cholinotropic

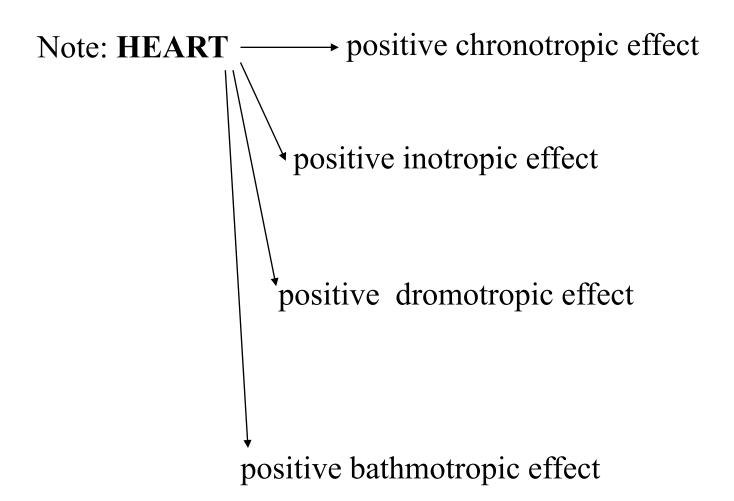
ANS RECEPTORS

adrenergic receptors

cholinergic receptors

- -skeletal muscle N_M
- -vegetative ganglia N_N

-(CNS)


MUSCARINIC:

 M_1, M_2, M_3, M_4, M_5

organ	receptor		sympathetic system	parasympathetic system
heart	ß ₁	M	+ chrono, dromo, bathmo, inotropic	- chrono, dromo bathmo, inotrop.
eye	α_1 β_2	M	mydriasis acomodation into the distance	miosis acom.to close
respiratory tract	(α_1) $\underline{\beta_2}$	M	bronchoconstriction bronchodilatation	bronchoconstriction ↑secretion
blood vessels	α_1 (α_2) β_2	M	vasoconstriction vasoconstr. dilatation (coronary, blood vessels in skeletal muscles)	dilatation

organ	receptor		sympathetic system	parasympathetic system
GIT	$\frac{\alpha_1}{\alpha_2}$ $\underline{\beta_2} > \beta_1$	M M	↓ motility and tone sphincter contraction secretion inhibition	↑ motility sphincter relaxation secretion stimulation ↑ gastr. secretion
urinary bladder	α_1 β_2 , β_3	M_3	sphinct. contraction relax. of the bladder wall	sphinct. relaxation contract. of the bladder wall
kidney	$\underline{\beta_1} > \beta_2$		↑ renin secretion	
uterus	α_1 β_2		contraction relaxation-tocolysis	

			<u> </u>
organ	receptor	sympathetic system	parasympathetic system
liver	α_1, β_2	glycogenolysis gluconeogenesis	
pancreas	α_2 β_2	↓insulin secretion ↑insulin secretion	
sexual organs	α_1 M	ejaculation	erection
glands	α_1 M β_2	sparse secretion viscous secretion	sparse significantly increased secretion

Adrenergic receptors

- metabotropic
- α_1 , α_2 a β_1 , β_2 a β_3
- stimulated by noradrenaline (norepinephrine)

Receptor α_1 stimulation:

- <u>vasoconstriction</u> (skin, mucous membranes, splanchnic area,..)
- <u>mydriasis</u>

(+ ↓ intraocular pressure)

- contraction of pregnant uterus
- ejaculation
- urinary bladder sphincter contraction, GIT sphincter contraction
- glycogenolysis and gluconeogenesis stimulation
- (reduce secretion of bronchial glands)

Receptor α_2 stimulation:

- (presynaptic) <u>increased NA release</u> (espec. in CNS)
- stimulation of <u>platelet aggregation</u>
- vasoconstriction in local application, otherwise the influence of stimulation of central receptors to reduce sympathetic tone and BP
- <u>hypotensive effect of central mechanism</u>
- inhibition GIT secretion
- inhibition of lipolysis, increased fat storage

Receptor β_1 stimulation :

heart:

- 1 HR (+ chronotropic effect) SA node
- 1 automaticity (+ bathmotropic) AV node, ventricles
- 1 force of heart contraction (inotropic effect)
- 1 conduction (dromotropic effect)
- 1 oxygen consumption

kidney:

• 1 renin secretion

Receptor β_2 stimulation:

- <u>vasodilatation</u>, <u>espec.</u> in <u>skeletal muscles</u> ("preparation for fight or flight"), ↓ diastol. BP, <u>vasodilatation in coronar</u> <u>blood vessels</u>
- <u>bronchodilatation</u>
- relaxation of uterus (indic. in impending preterm birth)
- intestine wall relaxation
- intestinal passage decrease
- urinary bladder wall relaxation
- **glycogenolysis** ↑ glycemia, increased insulin secretion
- blockade of mast cells degranulation

Receptor β_3 stimulation:

- lipolysis
- urinary bladder wall relaxation (m. detrusor)

Cholinergic receptors

MUSCARINIC:

- M₁("neural") CNS, peripheral neurons, parietal cells of stomach, (glands with external secretion)
- M₂ ("heart") heart (<u>SA</u>, atria, AV, ventricles), (smooth muscle (GIT), neuronal tissue), presynapt. neur.endings
- M₃ glands, blood vessels (smooth muscle, hl. sval, endothelium), smooth muscles: bronchial muscles, GIT, urinary bladder, eye
- M₄ salivary glands, GIT (muscles), eye, CNS
- M₅ lungs, CNS

Cholinergic receptors

- M metabotropic
- stimulated by acetylcholine
- N coupled with ion channels
- stimulated by nicotine