# Control of calcium metabolism.

### Calcium and phosphorus homeostasis

Primary elements of blood tissue are calcium (Ca) and phosphorus (P).

- up to 65 % of bone weight
- almost all Ca and P supply, half of supply of Mg in human body
- Essential role of these elements in physiological processes

#### Bone tissue

- 99 % of overall Ca, of it 99 % in mineral component
- 1 % quickly mobilizable and convertible (ICF - ECF)

|                                          | Calcium ions                                                                      | Phosphate ions                                                                                                        |  |
|------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Extracellular                            |                                                                                   |                                                                                                                       |  |
| Concentration<br>total, in serum<br>free | $2.5	imes10^{-3}$ M $1.2	imes10^{-3}$ M                                           | $1.00 	imes 10^{-3}  { m M}$ $0.85 	imes 10^{-3}  { m M}$                                                             |  |
| Functions                                | Bone mineral<br>Blood coagulation<br>Membrane excitability                        | Bone mineral                                                                                                          |  |
| Intracellular                            |                                                                                   |                                                                                                                       |  |
| Concentration                            | 10 <sup>-7</sup> M                                                                | $1-2	imes10^{-3}\mathrm{M}$                                                                                           |  |
| Functions                                | Signal for:<br>• Neuron activation<br>• Hormone secretion<br>• Muscle contraction | <ul> <li>Structural role</li> <li>High energy bonds</li> <li>Regulation of proteins<br/>by phosphorylation</li> </ul> |  |

### Extra- and intracellular calcium

#### Extracellular calcium

- Cartilage and bone mineralization
- Cofactor of enzymes including proteins of coagulation cascade
- "Source" of intracellular calcium
- Excitable tissues

Intracellular calcium

- Signaling role
- Contractility
- Excitability
- Neurosecretion
- Endocrine and exocrine secretion
- Cell differentiation and proliferation
- Cell death and its regulation



### Calcium and its intake

Calcium absorption

- 25 60 %
- Age
- Dietary habits and calcium content in diet
- Bone tissue requirements
- Vitamin D

#### Stomach

- Gastric juice and role of HCl
- Signalization connected to HCl production

#### Small intestine

- Duodenum a jejunum 90 %
- Adaptive intake duodenum and ileum



Age-related negative calcium balance is an osteoporosis risk factor.

### Mechanisms of calcium absorption

#### Paracellular

- Luminal electrochemical gradient
- Integrity of intercellular connections
- Claudins and their role in paracellular transport

#### Transcellular

Vitamin D

- TRPV6 and associated proteins
- Recyclation of TRPV6
- Alternative mechanisms?





### Adaptation to dietary calcium levels





### Calcium on blood (calcemia)

### Calcium excretion

- 98 % of filtered Ca is reabsorbed
- 70 % proximal tubule
- 20 % thick ascending limb of HL
- 5 % collecting duct
- 2 % urine
- CaSR (TALH)
- Paracellin-1
- PTH



## Phosphorus

#### Distribution

- Bones cca 45 % Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>
- Organic and inorganic form in ICF and ECF
- Age, sex, growth

#### Blood

- Concentration 1 mM (serum)
- Ionized form (HPO<sub>4</sub><sup>2-</sup>, H<sub>2</sub>PO<sub>4</sub><sup>-</sup>)
- 12 % protein complexes
- Intracellular concentration approximately same as extracellular
- Cotransport with sodium

#### Functions

- Structural NA, phospholipids
- Modified saccharides, phosphoproteins, cofactors, G proteins
- Macroergic compounds (ATP)
- Regulatory role signaling cascade, energetic processes

#### Kidneys

- Reabsorption - proximal tubule (85 %) – *Npt1-3* 



### Magnesium

#### Distribution

- 1 mol bones approx. 54 %, muscles and soft tissues approx. 56 %
- ECF 0.5 mM

#### Blood

- 0.7 1 mM
- Approx. 30 % in protein complexes
- 15 % in phosphate and low molecular weight anion complexes
- 55 % free

#### Cell

- 95 % in ATP and similar molecules
- Concentration 0.5 mM
- Ion channels?

#### Kidneys

- 95 % of filtered amount is reabsorbed
- 15 % PT, 70 % cortical TAHL, 10 % DT
- Regulation magnesemia, calcamia, ECF volume

#### **Functions**

- Cofactor (glycolytic, kinase and phosphatase systems)
- Stabilizing function (DNA, RNA, ribosomes)
- Activator of ATP transporters
- Neuromuscular excitability



### Bone tissue physiology

#### Compact (cortical) bone – approx. 80 %

- Low surface-to-volume ratio, osteocytes in resting state
- Haversian canals with concentric layers of collagen osteons (Haversian systems)
- Collagen matrix impregnated with bone mineral crystals
- 20 x 3-7 nm, mainly hydroxyapatite

#### **Trabecular (spongy) bone** – cca 20 %

- High surface-to-volume ratio
- High metabolic activity
- Nutrients diffuse from ECF to trabecules



www.creab.org - Human Body Anatomy - Online anatomy atlas. Viktoria Ruppel. 14. 3 2015

#### Collagen type I = most important protein of bone matrix

### Bone matrix and bone mineral



Signaling + haematopoiesis

### Collagen and its synthesis





### Bone tissue and its remodeling



### Bone tissue and its remodeling

Osteocytes (OC)

- Metabolic activity
- PTH receptors
- Communication with bone surface
- Mechanic sensing
- RANKL production
- Direct degradation of bone tissue (osteocytic osteolysis)
- Adaptive remodeling

#### Osteoblasts (OB)

- Bone matrix production
- Production of collagen and noncollagen peptides + their orientation
- Regulation by hormones, local factors and cytokines
- Differentiation and further fate apotosis, osteocytes, lining cells
- "recruitment" of other cells IGF 1, IGF-2, TGF-β



#### Lining cells

- Stimulation of OB differentiation
- OC communication
- Differentiation to OB stimulated by PTH

Osteoclasts (OK) - Bone tissue

reabsorption

### Remodeling unit - BMU

- Stimulatory and inhibitory signals of osteocytes (oncostatin M - OSM, sclerostin, PTHrP)
- Stimulatory and inhibitory signals of osteoclasts to osteocytes (TGF-β, IGF-1, cardiotropin-1, Sema4D – semaforin 4D, sfingosin-1 phosphate)
- Signalling between osteoblasts (ephrinB2, EphB4, Sema3a, PTHrP, OSM)
- Stimulatory and inhibitory signals between osteoblasts and osteoclasts and their derivatives (RANKL, Sema3B, Wnt5a, osteoprotegerin - OPG)
- Signalling between haematopoietic stem cells and osteoblasts (macrophage-produced OSM, IL produced by T-cells, RANKL)



### Osteocyte origin





Osteocyte

- Changes in metabolic activity
- Formation of "projections" communication
- Communication with other osteocytes (syncytium – OC + OB)



### Bone tissue resorption by osteoclasts



### Factors influencing bone tissue remodeling



### Endocrine regulation of bone tissue

| Hormone                 | Effect                                                                                                                                                                                                                                                                                         | Target cells                                                         |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| РТН                     | <ul> <li>Stimulation of resorption (long-term effect)</li> <li>Stimulation of bone formation (pulsatile effect)</li> <li>Stimulation of local secretion of IL-1 and IL-6</li> </ul>                                                                                                            |                                                                      |  |
| Vitamin D               | <ul> <li>Stimulation of resorption (higher concentration)</li> <li>Inhibition of mineralization (higher concentration)</li> <li>Stimulation of bone formation (low concentrations, with PTH)</li> </ul>                                                                                        | Osteoblasts (primarily)                                              |  |
| Calcitonin              | <ul><li>Inhibition of resorption</li><li>Regulation of bone tissue remodeling</li></ul>                                                                                                                                                                                                        | Osteoclasts                                                          |  |
| Growth hormone<br>IGF-1 | <ul> <li>Stimulation of bone turnover</li> <li>Stimulation of osteoblast proliferation and differentiation</li> <li>Increased synthesis of collagen and other proteins</li> </ul>                                                                                                              | Osteoblasts – primarily GH<br>Osteoblasts and osteoclasts –<br>IGF-1 |  |
| Glucocorticoids         | <ul> <li>Decreased absorption of Ca in GIT</li> <li>Induction of osteoclastogenesis</li> <li>Increased bone resorption (+ RANKL)</li> <li>Suppressed remodeling of bone tissue</li> <li>Induction of apoptosis in osteoblasts and osteocytes</li> <li>Inhibition of IGF-1 synthesis</li> </ul> | Osteoblasts, osteocytes,<br>osteoclasts                              |  |
| Thyroid hormones        | <ul> <li>Children – Stimulation of mineralization and epiphyseal maturation</li> <li>Adults – increased resorption</li> <li>Chondrocyte growth and proliferation (permissive effect on growth hormone)</li> <li>Increased transcription of collagenase and gelatinase</li> </ul>               | Osteoblasts, osteoclasts (also indirect through TSH)                 |  |
| Insulin                 | <ul> <li>Stimulation of bone tissue formation and mineralization</li> <li>Increased collagen synthesis</li> <li>Stimulation of IGF-1 secretion</li> </ul>                                                                                                                                      | Primarily osteoblasts                                                |  |
| Sex hormones            | <ul> <li>Epiphyseal closure (E)</li> <li>Inhibition of RANKL secretion</li> <li>Changes in speed of bone resorption and formation (stimulation of formation and mineralization)</li> </ul>                                                                                                     |                                                                      |  |
| Prolactin               | - Indirect effect                                                                                                                                                                                                                                                                              |                                                                      |  |

### Insulin – osteocalcin axis



### Bone tissue metabolism markers

|                                               |                                   | Marker                                                                                                                                                                                                                                 | <b>Tissue origin</b>                            | Analytical<br>sample                         | Analytical<br>method       |
|-----------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|----------------------------|
|                                               |                                   | Hydroxyproline, total and dialyzable (OH-Pro, OHP);<br>specific for all fibrilar collagens and a part of collagen proteins, including<br>Ciq and elastin; present in newly synthesized and mature collagen                             | bone, skin,<br>cartilage,<br>soft tissues       | urine                                        | colorimetry,<br>HPLC       |
|                                               |                                   | <b>Pyridinoline (PYD, Pyr);</b><br>high concentrations in cartilage and bone collagen: not present in skin;<br>present only in mature collagen                                                                                         | bone, tendon,<br>cartilage                      | urine                                        | HPLC, ELISA                |
|                                               |                                   | <b>Deoxypyrindoline (DPD, d-Pyr);</b><br>high concentrations only in bone collagen: not present in cartilage or in<br>skin; present only in mature collagen                                                                            | bone, dentine                                   | urine                                        | HPLC, ELISA                |
|                                               |                                   | <b>Cross-linked C-terminal telopeptide of type I collagen (ICTP);</b><br>high proportion from bone collagen in type I collagen; can partly originate<br>from newly synthesized collagen                                                | bone, skin                                      | serum                                        | RIA                        |
| Plasmatic phosphates3 – 4.5 mg/PTH10 – 65 pg/ | 8.5 – 10.5 mg/dL<br>3 – 4.5 mg/dL | Cross-linked C-terminal telopeptide of type I collagen<br>(fragments alpha-CTX, beta-CTX);<br>in type I collagen; probably high proportion from bone collagen                                                                          | all tissue con-<br>taining type l<br>collagen   | urine, serum                                 | ELISA, RIA,<br>ECLIA       |
|                                               | 10 – 65 pg/mL<br>30 – 100 ng/mL   | Cross-linked N-terminal telopeptide of type I collagen (fragments NTX); in type I collagen; big proportion from bone                                                                                                                   | all tissue con-<br>taining type l<br>collagen   | urine (alpha/<br>beta), serum<br>(only beta) | ELISA, RIA,<br>ICMA        |
| Vitamin D                                     | 50 – 100 lig/ilit                 | <b>Hydroxylysine-glycosides (Hyl-Glyc);</b><br>collagens and collagen proteins; glucogalactosyl- hydroxilysine is highly<br>represented in soft tissue collagens and C1q; galactosil-OHLys is highly rep-<br>resented in bone collagen | bone, skin, soft<br>tissue, serum<br>complement | urine                                        | HPLC, ELISA                |
|                                               |                                   | Bone sialoprotein (BSP);<br>synthesized by active osteoblasts and lay in extracellular bone matrix; it<br>seems to express osteoclast activity                                                                                         | bone, dentine,<br>hypertrophic<br>catrilage     | serum                                        | RIA, ELISA                 |
|                                               |                                   | Tartarat-resistant acid phosphatase (TR-ACP);<br>osteoclasts, thrombocytes, erythrocytes                                                                                                                                               | bone, blood                                     | plasma/serum                                 | colorimetry,<br>RIA, ELISA |
|                                               |                                   | Free gamma carboxyglutamin acid (GLA);<br>resulted from bone proteins (e.g. osteocalcin, matrix Gla protein) and from<br>coagulation factor                                                                                            | blood, bone                                     | serum/urine                                  | HPLC                       |

HPLC – high performance liquid chromatography; ELISA – enzyme-linked immunosorbent assay; RIA – radio immuno assay; ECLIA – electrochemiluminiscence immunoassay; ICMA – immunochemiluminometric assay

### Clinical relevance

- Osteogenesis imperfecta
- Osteopetrosis
- Osteomalacia
- Rachitis
- Osteopenia T score -1 -2.5
- Osteoporosis T score under -2.5



### Parathormone

#### Characteristics

- Parathyroid glands chief cells
  - Synthesis and storage of PTH
  - Very quick secretion of PTH
  - Ability to proliferate during long-term stimulation



#### PTH

- Synthetized as pre-pro-PTH
- Several types of secretion granules (PTH; PTH+cathepsin B, H)
- Very quick metabolization (70 % liver, 20 % kidneys) 2 min
- Presence of several types of fragments
- PTHR1, PTHR2, PTHR3 G prot.



### **PTH** secretion

Cell proliferation of chief cells is an important adaptive mechanism for:

- Hypocalcemia
- Low levels of vitamin D(1,25(OH)<sub>2</sub>D<sub>3</sub>)
- Hyperphosphatemia (uremia)
- Neoplastic growth



#### Level of ionized calcium in blood is a key parameter for PTH secretion.

During sudden decrease of ionized calcium is PTH secretion increased.

Vitamin D decreases PTH secretion (inhibits expression and production of PTH), NOT during chronic hypocalcemia

Phosphates stimulate production and secretion of PTH with delay.

### Calcium sensing receptors - CaSR - and PTH secretion



#### CaSR – G-protein coupled receptor

- Activation of PLC
- Inhibition of cAMP production

Various distribution in tissues – all tissues participating in calcium homeostasis

- Parathyroid glands
- Kidneys
- Skin
- GIT epithelium, enterocytes
- G cells of stomach
- CNS

#### **Clinical aspects**

- Mutation inactivation/activation
- familial hypocalciuric hypercalcemia (in.)
- Familial hypoparathyroidism with hypercalciuria (ac.)
- Calcimimetics inhibition of PTH secretion



### PTH and bone tissue physiology



Effect of PTH on osteoclasts is indirect. Pulsatile secretion stimulates osteoblasts, chronic continual osteoclasts.

### Parathyroid Hormone-Related Peptide - PTHrP

#### Characteristics

- First as a peptide produced by tumors endocrine effect – kidneys + bones
- Also paracrine local increase of Ca concentration
- Later discovered in many tissues

#### **Functions**

- Calciotropic hormone
- Fetal development proliferation and differentiation
- Lactation (+) resorption of bone tissue without possibility to affect by Ca supplementation
- Skin proliferation and differentiation
- GIT, bladder, uterus (+) smooth muscles relaxation
- CNS neuroprotection
- Para-/auto-/intracrine effect



### Calcitonin

#### Characteristics

- C cells of thyroid gland
- Family of peptides (amylin, CGRPs, adrenomedulin)
- Different distribution in various tissues
- Secretion is determined by level of ionized calcium (CaSR)
- Stimulation of secretion:
  - Glucocorticoids
  - CGRP
  - Glucagon
  - Enteroglucagon
  - Gastrin
  - Pentagastrin
  - Pancreozymin
  - β-sympatomimetics
- Inhibition of secretion somatostatin

#### Functions

- Bone tissue
  - Inhibition of osteoclast motility and differentiation
  - Inhibition of osteoclast secretion
  - ATPase inhibition
- Kidneys

**Function unclear** 

- Increased excretion of Ca inhibition of resorption (Ca<sup>2+</sup> ion channels – LS, Na<sup>+</sup>/Ca<sup>2+</sup> - BM)
- Skeleton development?
- Skeleton protection during pregnancy?

#### Clinical relevance

- Osteoporosis therapy
- Paget disease therapy
- Treatment of pain (bones metastases)
- ! Increased risk of cancer

# Calcitonin gene, mRNA splicing and posttranslational modifications



### Calcitonin gene-related peptide - CGRP



Russell FA, King R, Smillie SJ, Kodji X, Brain SD: CALCITONIN GENE-RELATED PEPTIDE: PHYSIOLOGY AND PATHOPHYSIOLOGY. Physiol Rev 2014, 94(4):1099-1142.

### CGRP - functions

Vasodilatation induced by various mechanisms

- G prot.
- eNOS/NO



Russell FA, King R, Smillie SJ, Kodji X, Brain SD: CALCITONIN GENE-RELATED PEPTIDE: PHYSIOLOGY AND PATHOPHYSIOLOGY. *Physiol Rev 2014, 94(4):1099-1142.* 

### Vitamin D....hormone?...vitamin?



### Physiological effects of vitamin D

| <ul> <li>VDR</li> <li>High affinity to 1,25(OH)<sub>2</sub>D</li> <li>Level of circulating 1,25(OH)<sub>2</sub>D</li> <li>Heterodimer with RXR – coactivators, corepressors</li> </ul>                       | <ul> <li>Parathyroid glands</li> <li>Gene expression regulation</li> <li>Cell proliferation regulation</li> <li>(-) PTH gene transcription</li> </ul>                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Non-genomic effects</li> <li>Rapid increase of intracellular Ca concentration</li> <li>PLC activation</li> <li>Opening of some Ca ion channels</li> <li>Required VDR presence</li> </ul>            | <ul> <li>Bones and bone tissue</li> <li>(-) collagen synthesis</li> <li>(+) osteocalcin synthesis</li> <li>(+) osteoclasts differentiation – osteoclastogenesis</li> <li>(+) RANKL</li> </ul> |  |
| <ul> <li>Vitamin D and Ca absorption/reabsorption</li> <li>(+) CBP, AP, Ca<sup>2+</sup>/Mg<sup>2+</sup>-ATPase</li> <li>(+) TRPV6 – absorption (GIT)</li> </ul>                                              | <ul> <li>Main function – ensuring the stability of the bone<br/>microenvironment for mineralization by the<br/>standard intake and availability of Ca and<br/>phosphates</li> </ul>           |  |
| <ul> <li>(+/-) TRPV5 – reabsorption (kidneys)</li> <li>Calbindin-9K</li> <li>1,25(OH)<sub>2</sub>D-inducible ATP-dependent Ca<sup>2+</sup> pump</li> <li>Na<sup>+</sup>/Ca<sup>2+</sup> exchanger</li> </ul> | Muscle tissue<br>- (+) uptake AAs<br>- (+) troponin C<br>- Phospholipids metabolism                                                                                                           |  |

### Vitamin D and immune system

**Clinical relevance** 

- Analogue of vitamin D without ability to cause hypercalcemia
- Antiproliferative effect treatment of cancer?
- Synergy with cyclosporin B rejection of transplantates
- Suppression of PTH synthesis –
   22-oxacalcitriol (hyperparathyroidismus)
- Psoriasis (clinical trials)

Macrophages Dendritic cells T cells



### FGF23 – fibroblast growth factor 23

#### Characteristics

- New hormone?
- Overexpression = hypophosphatemia and decrease of  $1\alpha$  25(OH)D hydroxylation

#### **Functions**

- maintaining normophosphatemia and regulation of vitamin D metabolism
- Decreased expression of IIa, IIb, and IIc (NPT) phosphate transport
- Increased expression of 24-hydroxylase inactive form
- Klotho = co-receptor

#### Regulation

- Phosphorus availability in diet (-)
- Serum phosphorus
- 1,25(OH)<sub>2</sub>D
- iron

#### Clinical relevance:

- Autosomal dominant hypophosphatemic rickets (ADHR)
- Tumor-induced osteomalacia (TIO)
- Klotho mutation
- Prediction of chronic kidney failure prognosis





### Calcium homeostasis – still just a simplified model

