MUNI NED

3

Intracranial compartment, Cellular base of nervous system

2 Intracranial compartment, Cellular base of nervous system

Compartmentalization

- Cellular specialization leads to compartmentalization on several levels
 - Tissue level
 - Organ level
 - Organ system level
- There are barriers in between compartments
- Properties/content may vary among different compartments

Compartmentalization

 $M \in D$

Compartmentalization

Intracranial compartment

sinus

space

- ✓ "Very specific region"
- ✓ Brain
- ✓ Cerebrospinal fluid
- ✓ Blood (intravasculary)
- **Barriers** \checkmark
 - Meningeal ۲
 - Hematoliquor ullet
 - Hematoencephalic ullet

Meningeal and hematoliquor barrier

Adopted from: M.H.Ross and W. Pawlina. Histology: a text and atlas, Lippincott Williams & Wilkins, 2011

https://sisu.ut.ee/histology/meninges

Ependymocytes Capillary Pia mater Pia mater Ventricle Reabsorbtion of toxic waste Ventricle Cerebrospinal fluid filtrate containing glucose, oxygen, vitamins and ions (Na+, Cl-, Mg++, etc.)

https://sisu.ut.ee/histology/meninges

MUNI

MED

7

Hematoencephalic barrier

- Highly organised structure
 - Endothelial cells (low permeability thanks to zonlua occludens)
 - Basal membrane
 - Astrocytes
 - Pericytes

https://upload.wikimedia.org/wikipedia/commons/1/12/Blood_vessels_brain_english.jpg

Hematoencephalic barrier

FSM (basic artwork: wikimedia commons)

Circumventricular organs

- Rich vascularisation
- Modified hematoencephalic barrier
- Sensors
- Secretion

The circumventricular organs

http://www.neuros.org/index.php?option=com_photos&view=photos&oid=hafizbilal

MUNT

MED

Cerebrospinal fluid

- Content
 - ✓ High levels of Mg^+ and Na^+
 - $\checkmark~$ Low levels of K⁺ and Ca²⁺
 - ✓ Almost no cells (max 5/ml)
- Function
 - ✓ Protection
 - ✓ Microenvironment of neurons and glia
 - Metabolic function
 - Immunologic function
 - Transport function and so on

http://www.control.tfe.umu.se

MUNI MED

Cerebrospinal fluid

- Clear fluidproduced by active secretion
- Liquor space
 - lined by ependymal cells
 - ≻ 150-250 ml

http://www.control.tfe.umu.se

MUNT

MED

Cerebrospinal fluid

- Clear fluidproduced by active secretion
- Liquor space
 - lined by ependymal cells
 - ≻ 150-250 ml
- Production
 - ✓ Plexus choroideus (PCh) -70%
 - ✓ Cell metabolism
 - ✓ Cappilary filtration
 - ➢ 450-750 ml/day
- Resorbtion
 - ✓ Archnoid granulations (AG)

http://www.control.tfe.umu.se

MUNI MED

New insight into the production and resorbtion of CSF

Ducros A, Biousse V. Headache arising from idiopathic changes in CSF pressure. *The Lancet Neurology*. 2015;14:655–668.

- CSF cerebrospinal fluid
- ISF interstitial fluid
- VRS Virchow Robin space (space between the pia mater and an artery or a vein, but not capillaries)

http://visnu528.blogspot.cz/2014/09/glymphatics-and-virchow-robin-space.html

14 Intracranial compartment, Cellular base of nervo

Intracranial compartment

- Brain
- Cerebrospinal fluid
- Blood (intravasculary)
- Intracranial pressure (ICP)
 - Critical determinant of cerebral perfusion
- Cerebral perfusion pressure (CPP) pressure gradient driving blood flow intracranialy

!!! CPP = MAP - ICP !!!

Cerebral perfusion pressure Intracranial pressure Mean arterial pressure

Cellular base of nervous system

- Neuronal cells
 - Reception, integration and propagation of information
 - Unique, irreplaceable
- Neuroglial cells
 - Support for neuronal cells
 - Easily replacable

Cellular base of nervous system

- Neuronal cells
 - Reception, integration and propagation of information
 - Unique, irreplaceable
- Neuroglial cells
 - Support for neuronal cells
 - Easily replacable
- The total amount of neuronal cells 100 billions (10¹¹)
- Neruon/glia ratio
 - 1/10 50 (Principles of Neural Science, 4th ed., 2012)
 - 1/2 10 (Principles of Neural Science, 5th ed., 2012)
 - 1/1 (Nolte's Human Brain, 7th ed., 2015)

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development

MUNT

 $M \vdash D$

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat

 $M \vdash D$

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune funtion

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune funtion
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining
 - (liquro-encephalic barrier)
- 21 Intracranial compartment, Cellular base of nervous system

MUNI Med

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune funtion
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining
 - (liquro-encephalic barrier)
- 22 Intracranial compartment, Cellular base of nervous system

Peripheral nervous system

- Satelite cells
 - Support functions in PNS

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune function
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining
 - (liquro-encephalic barrier)
- 23 Intracranial compartment, Cellular base of nervous system

Peripheral nervous system

- Satelite cells
 - Support functions in PNS

- Schwan cells
 - Myelin sheat

https://en.wikipedia.org/wiki/Oligodendrocyte#/media/

cu.www.www.eu.a. المالية الحالية المالية الم

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune funtion
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor A
 - Ventricular lining (liquro-encephalid____
- Intracranial compartment, Cellular base of nervous system 24

mitel

Peripheral nervous system

- Satelite cells
 - Support functions in PNS _

MUNT $M \in D$

Neuron

http://www.slideshare.net/drpsdeb/presentations

http://www.slideshare.net/drpsdeb/presentations

MED

Background Activity

https://upload.wikimedia.org/wikipedia/commons/e/ed/Neuron_Cell_Body.png

Background Activity

MUNI MED

Background Activity

Fast axonal transport

- bidirectional
- ATP dependant
- associated with microtubules:

dynein and kinesin

Fast axonal transport

29

Golgi derived vesicles lysosmes, mitochondria structural elements of endoplasmic reticulum

Slow axonal transport

- unidirectional,
- ATP independant
- conducted by sliding, polimerizing and protein interacting

Slow axonal transport

microfilaments, microtubules neurofilaments cytosolic protein complexes

Membrane potential

• Due to differences in the concentrations of ions on opposite sides of a cellular membrane

http://www.slideshare.net/drpsdeb/presentations

MED

Resting membrane potential of a neuron

- Highly instable state of membrane
- Why? Speed!
- High energetical demands
 - ✓ Oxygen 20% of total body consumption
 - ✓ Glucose 25% of total body consumption

MED

Action potential

- Quick voltage change on the membrane
- Spreads along the axc

Treshold potential around -55 mV

• All or nothing principl

32 Intracranial compartment, Cellular base of nervous system

MUNI MED

Action potential spreading

33 Intracranial compartment, Cellular base of nervous system

http://www.slideshare.net/drpsdeb/presentations

MUNI MED

Saltatory conduction

- Myelin sheat
- Nodes of ranvier
- Economy
- Speed of conduction
- Speed of conduction also dependent of nerve fibre diameter
 - the electrical resistance is inversly proportional to area of crosssection

 $M \vdash D$

Classification of nerve fibers

- In humans mostly myelinated
- All fibers are myelinated in CNS
- Non-myelinated are evolutionary old ones

http://neuroscience.uth.tmc.edu/s2/chapter04.html

Neuronal classification

Basis for classification	Example	Functional implication	Structure
3. Number of processes One process exits the cell body	Unipolar neuron (dorsal root ganglion cell)	Small area for receiving synaptic input: highly specialized function	Unipolar
Two processes exit the cell body	Bipolar neuron (retinal bipolar cell)	Small area for receiving synaptic input: highly specialized function	Bipolar Multipolar
Many processes exit the cell body	Multipolar neuron (spinal motor neuron)	Large area for receiving synaptic input; determines the pattern of incoming axons that can interact with the cell	Multipolar

Intracranial co 36

MUNI MED

Neuronal classification

Basis for classification	Example	Functional implication	Structure
2. Dendritic pattern Pyramid-shaped spread of dendrites	Pyramidal cell (hippocampal pyramidal neuron)	Large area for receiving synaptic input; determines the pattern of incoming axons that can interact with the cell (i.e., pyramid-shaped)	Pyramidal cell
Radial-shaped spread of dendrites	Stellate cell (cortical stellate cell)	Large area for receiving synaptic input; determines pattern of incoming axons that can interact with the cell (i.e., star-shaped)	Stellate cell

MUNI Med

Neuronal classification

Basis for classification	Example	Functional implication	Structure
1. Axonal projection Goes to a distant brain area	Projection neuron or Principal neuron or Golgi type I cell (cortical motor neuron)	Affects different brain areas	Dorsal root ganglion cell
Stays in a local brain area	Intrinsic neuron or Interneuron or Golgi type II cell (cortical inhibitory neuron)	Affects only nearby neurons	Retinal bipolar cell

68. Cellular base of nervous system

- ✓ Neuroglial cells
 - Classification and functional overview
- ✓ Neuronal cells
 - Characterization, classification, anatomy
 - Functions of neurons
 - Background activity (cytoplasm)
 - Synhtesis (soma)
 - Transport (categorization, characterization)
 - Information processing and transmission (membrane)
 - Main points of question No. 70

69. Intracranial compartment, intracranial pressure

✓ Content of intracranial compartment (brain, blood, CSF)

- ✓ Barriers among compartments (meningeal, hematoencephalic, hematoliquor)
 - HEB description
 - Circumventricular organs
- ✓ CSF
 - Function
 - Production, circulation, absorption
- ✓ Intracranial pressure
 - Definition, equation, implications

70. Membrane voltage, action potential – generation and propagation through nerve fibers

- ✓ Membrane potentials
 - General characteristics and ionic mechanisms description
- ✓ Resting potential in neuron (characteristics)
- ✓ Action potential
 - Characteristics
 - Ionic mechanisms
 - Signal conduction
 - Role of myelin, saltatory conduction
- ✓ Classification of nerve fibres
- 41 Intracranial compartment, Cellular base of nervous system

MUNI NED