

4

Synapse and integration of information at the synaptic level

Background Activity

The inside of the cell

- **√** ..
- ✓ Synthesis
- ✓ Transport
- **√** ..

Neuron

Information processing and transmission

The membrane

- ✓ Signal reception
- ✓ Signal integration
- ✓ AP generatin
- ✓ AP propagation
- ✓ Signal transmission

Action potential

Quick voltage change on the membrane

Spreads along the axc Input signal All or nothing princip Directional flow of information Integration Cell-body Resting potential around -70 mV Nucleus Axon hillock Axon (initial segment) Treshold potential around -55 mV Myelin Presynaptic Output signal axon terminal Synapse Postsynaptic neuron Fig. 8-2

Synapse

 Communication between neurons

http://www.slideshare.net/CsillaEgri/presentations

Synapse

- Communication between neurons
- Electrical
- Chemical

http://www.slideshare.net/CsillaEgri/presentations

Electrical synapse

- Evolutionary old
- Less frequent than ch.
- Ubiquitous

http://www.slideshare.net/CsillaEgri/presentations

Electrical synapse

- Evolutionary old
- Less frequent than ch.
- Ubiquitous
- Gap junctions
- Bidirectional tranmission
- Fast
- Strength of signal may decrease

http://www.slideshare.net/CsillaEgri/presentations

Chemical synapse

- Evolutionary young
- Majority type of s.

Chemical synapse

- **Evolutionary young**
- Majority type of s.
- Unidirectional
- Synaptic cleft
- Neurotransmitter
- Constant signal strength

Neurotrasnsmiter

http://www.slideshare.net/CsillaEgri/presentations

Present in presinaptic neuron

Neurotrasnsmiter

http://www.slideshare.net/CsillaEgri/presentations

- Present in presinaptic neuron
- Releasd into the synaptic cleft due to depolarization of presynaptic neuron (Ca²⁺ dependent mechanism)

Neurotrasnsmiter

http://www.slideshare.net/CsillaEgri/presentations

- Present in presinaptic neuron
- Releasd into the synaptic cleft due to depolarization of presynaptic neuron (Ca²⁺ dependent mechanism)
- Specific receptor has to be present in postsynaptical membrane

https://classconnection.s3.amazonaws.com/108/flashcards/956108/jpg/bookpic421333407057201.jpg

Neuromuscular junction

Excitatory/inhibtory postsynaptic potencial

http://www.slideshare.net/drpsdeb/presentations

Signal summation

- Temporal
- Spatial

https://www.slideshare.net/drgabe/biological-psychology-synapses?from_action=save

http://www.slideshare.net/drpsdeb/presentations

Signal summation

Synaptic convergence

"Convergence" of multiple input fibers onto a single neuron. A, Multiple input fibers from a single source. B, Input fibers from multiple separate sources.

Synaptic convergence

Average number of synapses in one neuronal cell in primates

- ✓ Primary visual cortex (area17)
 - aprox. 4 000
- ✓ Primary motor cortex (area4)
 - aprox. 60 000

"Convergence" of multiple input fibers onto a single neuron. A, Multiple input fibers from a single source. B, Input fibers from multiple separate sources.

Synaptic divergence

Figure 46-11

"Divergence" in neuronal pathways. A, Divergence within a pathway to cause "amplification" of the signal. B, Divergence into multiple tracts to transmit the signal to separate areas.

Networking

Networking

Neurotransmission Neuromodulation VS.

Information transmission

Regulation of NS activity

Neurotransmission Neuromodulation VS.

- Information transmission
- Specific

- Regulation of NS activity
- Diffuse (volume transmission)

Neurotransmission vs. Neuromodulation

- Information transmission
- Specific

• Receptors – ion channels

- Regulation of NS activity
- Diffuse (volume transmission)
- Receptors G-proteins

Neurotransmission

- Information transmission
- Specific

- Receptors ion channels
- Short duration
 - membrane potential changes

vs. Neuromodulation

- Regulation of NS activity
- Diffuse (volume transmission)
- Receptors G-proteins
- Longer duration
 - changes in synaptic properties

Acetylcholine

- Nucleus basalis (Meynerti) abd other nuclei
- Nicotin receptors
- Muscarin receptors

- Sleep/wake regulation
- Cognitive functions
- Behavior
- Emotions

Noradrenalin

- Locus coeruleus
- Nuclei raphe caudalis
- Vigilance
- Responsiveness to unexpected stimuli
- Memory
- Learning

Dopamin

- Nigrostriatal system
 - Movement
 - Sensory stimuli
- Ventrotegmentno-mesolimbicfrontal system
 - Reward
 - Cognitive function
 - Emotional behavior
- Tubero-infundibular system
 - Hypotalamic-pituatory regulation
- D1 receptors excitatory
- D2 receptors inhibitory

http://www.slideshare.net/drpsdeb/presentations

Serotonin

- Nuclei raphe rostralis
- Nuclei raphe caudalis
- Anxiety/relaxation
- Impulsive behavior
- Sleep

http://www.slideshare.net/drpsdeb/presentations

Neuromodulatory systems

Jeffrey L. Krichmar, Adaptive Behavior 2008; 16; 385

http://image.slidesharecdn.com/neuromodulationincognition-140119031056-phpapp02/95/neuromodulation-incognition-5-638.jpg?cb=1419657931

Neuromodulatory systems

MUNI MED

71. Structure of synapse and integration of information on the synaptic level, neurotransmission vs. neuromodulation

- ✓ Synapse
 - Definition
 - Electrical vs. chemical
- ✓ <u>Definition and basic classifications of neurotransmitters</u>
- Excitatory/inhibitory postsynaptic potentials vs. action potential
 - Temporal and spatial signal summation
- ✓ Signal convergendce vs. divergence
- ✓ Neurotransmission vs. neuromodulation
 - Examples of neruomodulatory systems

#