MUNI NED

MUNI MED

11

Motor system I

Introduction

Skeletal muscle contraction is initiated by • lower motor neuron

ì

MED

Introduction

- Skeletal muscle contraction is initiated by lower motor neuron
- Lower motor neuron is a part of local reflex circuits

Introduction

- Skeletal muscle contraction is initiated by lower motor neuron
- Lower motor neuron is a part of local reflex circuits
- The information from several sources is integrated in the lower motor neuron
 - Higher levels of CNS
 - Upper motor neuron, tectum, n. ruber, brain stem
 - Proprioception

6

MUNI Med

ittp://www.frontiersin.org/files/Articles/42416/fnhum-07-00085-HTML/image_m/fnhum-07-00085-g001.jpg

MUNI Med

Lower motor neuron

• α motoneuron

- Innervation of contractile elements
- Extrafusal fibers
- Muscle contraction

• γ motoneuron

- Innervation of muscle spindles
- Intrafusal fibers
- Alignment of muscle spindles
- Gamma loop
- β motoneuron
 - Both extrafusal and intrafusal fiberrs

http://epomedicine.com/wp-content/uploads/2016/07/gamma-loop.jpg

MUNI

MED

Lower motor neuron

Topography

MUNI

MED

Motor unit

• A typical muscle is innervated by about 100 motoneurons which are localized in motor nucleus

Motor unit

- A typical muscle is innervated by about 100 motoneurons which are localized in motor nucleus
- Each motoneuron innervate from 100 to 1000 muscle fibers and one muscle fiber is innervated by a single motoneuron

Motor unit

- A typical muscle is innervated by about 100 motoneurons which are localized in motor nucleus
- Each motoneuron innervate from 100 to 1000 muscle fibers and one muscle fiber is innervated by a single motoneuron
- The ensemble of muscle fibers innervated by a single neuron and corresponding motoneuron constitutes the motor unit

Types of muscle fibers

Fast fibers

- Performance
- Fast fatigue-resistant normal performance
- ➤ Fast fatigable high performance

Slow fibers

- Endurance
- Fatigue resistant

MUNI MED

Types of muscle fibers

MUNI MED

14

The recruitment of motor neurons

m. gastrocnemius in a cat

Neuromuscular junction

Steps in E-C Coupling:

(1) The action potential (AP) propagates along the sarcolemma and down the

The aftermath

When the muscle AP ceases, the voltage-sensitive tubule proteins return to their original shape, closing the Ca2* release channels of the SR. Ca2+ levels in the sarcoplasm fall as Ca2+ is continually pumped back into the SR by active transport. Without Ca2+, the blocking action of tropomyosin is restored, myosin-actin interaction is inhibited, and relaxation occurs. Each time an AP arrives at the neuromuscular junction, the sequence of E-C coupling is repeated.

© 2013 Pearson Education, Inc.

Neuromuscular junction

Muscle fibers

http://www.sivabio.50webs.com/mus019.jpg

MUNI Med

Types of muscle contraction

- Isotonic contraction •
 - Constant tension

19

 \blacktriangleright Concentric x excentric contraction

- Isometric contraction •
 - Constant length

Movement

Movemen

Isometric contraction Muscle contracts

but does not shorten

No movement

(a)

(b)

(c)

MUNT MED

Proprioception

Information about the position of body parts in relation to each other

(The sum of information about lengths of particular muscles)

- Information about movement (The force and speed of muscle contraction)
- Reflex regulation of muscle activity
- Muscle spindles
 - Lie in parallel with extrafusal muscle fibers
- Golgi tendon organ
 - Arranged in series with extrafusal muscles

http://www.slideshare.net/CsillaEgri/presentations

MUNT

 $M \in D$

Muscle spindle and Golgi tendon organ

http://images.persianblog.ir/559630_iXFiuRo0.jpg

Muscle spindles

- Nno-force generating contractile structures
- The contractility is for spindle length adjustment
- Encapsulated structure filled with a fluid
- Intrafusal fibers

http://www.slideshare.net/CsillaEgri/presentations

Muscle spindles

- Nno-force generating contractile structures
- The contractility is for spindle length adjustment
- Encapsulated structure filled with a fluid
- Intrafusal fibers
 - Lie in parallel with extrafusal muscle fibers
 (Stretch/shorten along with extrafusal fibers)
 - Efferent connections (into muscle spindle)
 - γ motoneuron
 - Afferent connections (from muscle spindle)
 - Information about change in muscle length
 - Reflex regulation of the α motoneuron activity

http://www.slideshare.net/CsillaEgri/presentations

Muscle spindles

- Static fibers
- Dynamic fibers
- Afferent connections (from spindle)
 - II static fibers
 - Information about muscle length (position)
 - Ia static and dynamic fibers
 - Information about muscle length and contraction (movement)
 - Reflex regulation of the α motoneuron activity
- Efferent connections (into spindle)
 - Static γ motoneurons
 - Dynamic γ motoneurons
 - Spindle length adjustment

B Intrafusal fibers of the muscle spindle

Afferent signaling from muscle spindles

II – Static fibers

- Static response
- Ia Static and dynamic fibers
 - Static and dynamic response

MED

Efferent signaling into the muscle spindle

- γ motoneurons adjust the length of intrafusla fibers
- Regulation of sensitivity
- α and γ coactivation

MED

Golgi tendon organs

- Non-contractile encapsulated structures
- Collagen fibers
- la fibers
- Mechanoreception
- Arranged in series with extrafusal muscles
- Information about changes in tendon tension/force
- Reflex regulation of the α motoneuron activity

http://www.slideshare.net/CsillaEgri/presentations

Reaction of muscle spindles and the Golgi tendon organs to muscle fiber stretch/contraction

Stretch (passive) Muscle spindles reaction

Contraction (active) Golgi tendon organ reaction

 $M \vdash D$

Hierarchic organization of motor system

Hierarchic organization of motor system

Reflex

- Reflex movement
 - Stereotype (predictable)
 - Involuntary
- Proprioceptive
- Exteroceptive
- Monosynaptic
- Polysynaptic
- Monosegmental
- Polysegmental

http://www.slideshare.net/CsillaEgri/presentations

MUNT

MED

Proprioceptive reflexes

- Myotatic reflex
 - Monosynaptic
 - Monosegmental
 - Muscle spindle
 - Homonymous muscle activation
 - Antagonist muscle inhibition
- ✓ Phasic response (Ia)
 - Protection against overstretch of extrafusal fibrers
- ✓ Tonic response (Ia a II)
 - Maintains muscle tone

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

MUNI

MED

34 Motor system I

Proprioceptive reflexes

- Inverse myotatic reflex
 - Monosegmental
 - Disynaptic/polysynaptic
 - Golgi tendon organ
 - Homonymous muscle inhibition
 - Antagonist muscle– activation
- Protection against muscle damage caused by extensive force

Golgi tendon reflex protects the muscle from excessively heavy loads by causing the muscle to relax and drop the load.

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

Fig. 13-6b

Exteroceptive reflexes

- Polysynaptic
- Polysegmental

MED

Exteroceptive reflexes

To motor neurons in other segments of the spinal cord

- Polysynaptic •
- Polysegmental •

Motor system I 38

Hierarchic organization of motor system

MUNI MED

79. Upper and lower motor neuron, neuromuscular junction, muscle contraction

- Upper and lower motor neuron localization and function
- Lower motor neuron
 - Only the structure responsible for muscle contraction
 - Part of local reflex circuit
 - Overview of structures and main pathways controlling lower motor neuron (protprioception, higher leves of CNS including upper motor neuron, medial system, lateral system tr. corticospinalis, sorticobulbaris...)
 - Types of lower motor neurons (alpha, gamma, beta)

- Upper motor neuron
 - Primary motor cortex, homunculus
- Motor unit definition
- Neuromuscular junction descrition
- Muscle contraction description

40 Motor system I

MUNI MED

80. Hierarchic organization of motor system – reflex vs. voluntary motor activity

- Hierarchy of movement
 - Reflex economical, uniform, protective, fast
 - Rhytmic economical solution for complex uniform actions (breathing, walking...)
 - Voluntary non-economical, unique, relatively slow
- Classification and description of reflexes

- Fixed action pattern and rhythmic movement (definition and examples)
- Voluntary motor control
 - Overview of structures involved in planning and execution of voluntary motor activity
 - Motor cortex organization (primary, premotor and supplementray motro cortex...)
 - Brief description of pyramidal tract

MUNI NED