MUNI NED

MUNI MED

15

Neocortex I

2 Neocortex I

Cerebral cortex

- Paleocortex (1%)
 - 3 layers
 - rhinencephalon
- Archicortex (4%)
 - 3-4 layers
 - hippocampus
- Neocortex
 - 6 layers

MUNI

http://www.emunix.emich.edu

MUNI

Primary areas
✓ Somathotopic organization

Association areas

✓ No somathotopic organization

- ✓ Unimodal
- ✓ Polymodal

 ✓ Association areas are thought to be the anatomical substrates of the highest brain functions—conscious thought, perception, and goal-directed action

http://www.emunix.emich.edu

MUNI

MED

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings

Organization of neocortex

- Specific inputs/outputs to/from each layer
- Vertical and horizontal connections in each layer
- Each layer usually contains cells with similar functions

MUNT

Organization of neocortex

- Specific inputs/outputs to/from each layer
- Vertical and horizontal connections in each layer
- Each layer usually contains cells with similar functions
- Local differences in cytoarchitecture were used by Brodmann for construction of the map of brain areas

Organization of neocortex

• Specific in THE × each layer III Vertical ar • IVa connectio IVb Each layer with simil efferent 5 Association afferent ssocial Projection efferent Projection efferent Specific afferent Specific afferent Specific afferent Local diffe VI cytoarchit monoamine Brodmann From other parts of the map d cortex nucleus From http://www.slideshare.net/drpsdeb/presentations thalamus To spinal cord, brainstem and

MUNT MED

cranial nerves

From

neurons

Brodman areas

9

Broadman's #	NAME	FUNCTION	
17	Occipital Lobe	Visual Projection Cortex	
18		Visual Association Cortex	
19	Posterior Parietal Lobe	Visual Association Cortex	
37	Tempero-parietal-occipital area	General Sensory Association Cortex	
39	Angular Gyrus	Word Recognition	
40	Supramarginal Lobe	Somatosensory Association Cortex	
1,2,3	Postcentral Gyrus	Somatosensory Projection Cortex	
5, 7	Superior Parietal Lobule	General Sensory Association Cortex	
41, 42	Middle 1/3 of Superior Temporal Cortex	Auditory Projection Cortex	
22	Superior Temporal Gyrus	Auditory Association Cortex	
21, 20, 38	Inferior Temporal Cortex	General Sensory Association Cortex	
4	Precentral Gyrus	Primary Motor Cortex	
1,2,3	Postcentral Gyrus	Somatosensory Projection Cortex	
6,8,9	Premotor Cortex	Motor Association Cortex	
41, 42	Middle 1/3 of Superior Temporal Cortex	Auditory Projection Cortex	
44,45,46	Broca's Area	Motor Association Cortex - Specific to speech	
10	Preftontal Cortex	General Motor Association Cortex	
11	Orbital Gyri	General Motor Association Cortex	

https://www.trans-cranial.com/docs/cortical functions ref v1 0 pdf.pdf

(Right)

12 | Brodmann Cortical Areas

Area 4 – Primary Motor Cortex

The human primary motor cortex is located on the anterior wall of the central sulcus. It also extends anteriorly out of the sulcus partly onto the precentral gyrus. Anteriorly, the primary motor cortex is bordered by a set of areas that lie on the precentral gyrus.

Clinical significance

Lesions of the precentral gyrus result in paralysis of the contralateral side of the body (facial palsy, arm-/ leg monoparesis, hemiparesis).

Notes

According to functional neuroimaging techniques area 4 participates in three different groups of func- temporal networks) only during "successful encodtions: Motor, somatosensory, and "others" ("verbal ing", suggesting a certain role in the attentional proencoding during a non-semantic process", "atten- cess (increased muscle tone). tion to action", and "motor memory for visual landmarks").

Motor function is the traditional function, and occasionally it has been reported that the primary motor cortex reacts to sensory stimulation. Nonetheless, in these cases the primary motor activation is found in addition to a more extensive pattern of activation, obviously including sensory areas; that is, area 4 may some times be included in a brain circuitry supporting sensory perception; area 4 activation may reflect in those cases the implicit representation of a potential movement.

This implicit representation of movements can also account for "attention to action" and "motor memory".

The participation in "verbal encoding during a nonsemantic process" is probably tangential, considering that it becomes activated (in addition to frontal and

Cerebral cortex and thalamus

- Close cooperation between cerebral cortex and thalamus
- Bilateral connections
- Almost all sensory information reaching cerebral cortex is gated by thalamus
- Exception olfaction

http://www.slideshare.net/drpsdeb/presentations

MUN1

Cortical functions

MUNI

Signal processing algorithm

http://www.slideshare.net/drpsdeb/presentations

Aferentation

Eferentation

✓ The Sequence of Information processing Is Reversed in the Motor System

http://www.slideshare.net/drpsdeb/presentations

Limbic association area

- Integration of information from inner and outer environment
- Hypothalamus
- Emotions
- Motivation
- Instinct behavior

MUNI

Parieto-occipito-temporal association area

- Linkage and interpretation of information from several sensory modalities
- Visual acoustic sensory analysis
- Object recognition and categorization
- Language comprehension
- Attention

http://www.slideshare.net/drpsdeb/presentations

Lateralization of cerebral functions

Lateralization of cerebral functions

Left and Right Brain Functions

Aphasia

Acalculia

Tactile agnosia

Conceptual apraxia

Ideomotor apraxia

Orientation disorders Constructional apraxia Anosognosia Neglect syndrome

Frontal association area

- **Executive function** •
 - Motor / behavioral —
 - Cognitive -----
- Mostly developed in human

Neocortex I

•1. Australopithecus robustus 2. Homo habilis 3. Homo erectus 4. Homo sapiens neanderthalensis 5. Homo sapiens sapiens

Phinease Gage (1823 – 1860)

- 1848 work injury
- Before injury
 - ➤ Reliable
 - > Friendly
 - ➢ Responsible
 - ➢ Polite

http://65.media.tumblr.com/553d3c3f3f579f57273b8598ec6739ab/tumblr_o11oqt0MUK1uaq7mqo1_1280.jpg

Phinease Gage (1823 – 1860)

- 1848 work injury
- Before injury
 - ➤ Reliable
 - > Friendly
 - ➢ Responsible
 - Polite
- After injury
 - Unreliable
 - ➤ Hostile
 - Irresponsible
 - ➢ Rude
- 1860 died from status epilepticus

 $http://65.media.tumblr.com/553d3c3f3f579f57273b8598ec6739ab/tumblr_o11oqt0MUK1uaq7mqo1_1280.jpg$

Frontal lobe

MUNI MED

https://d2gne97vdumgn3.cloudfront.net/api/file/edAV1gWAQ2uYSdYHSiPj

Frontal association area

- ~ 1/3 of neocortex
- One of the evolutionary youngest cortical areas
- Late development in ontogeny
 - Differentiation during the 1st year of life
 - Mostly developed around the 6th year of life
 - ? End of maturation around the 20th year of life?

Frontal association area

- Input from association cortex
 - P-O-T association area
 - Limbic association area
- Reciprocal connections:
 - prefrontal processing modulates perceptual processing
 - "Loops"
- Input to premotor areas

http://www.slideshare.net/drpsdeb/presentations

Functions of frontal association area

Motor/non-motor planning/organization - strategy - anticipation

- Thinking mental models processing
 - Attention "information filtering"
 - Behavioral control
 - Facilitation of "wanted"
 - Inhibition of "unwanted"

1. Motor planning / organization

- Frontal association area
- Premotor area
- $\checkmark\,$ Close cooperation with motor cortex
- ✓ Planning and preparing of complex motor action (in cooperation with Basal ganglia)
- ✓ Close cooperation with P-O-T area which sends visual-acoustic-sensory-spatial information

http://www.123rf.com/stock-photo/brain_icon.html?mediapopup=14828479

✓ Voluntary motor control

MUNI MED

2. Thinking skills

- Organization
 - The ability to arrange information in a meaningful system
- Planning
 - The ability to create a strategy for reaching goals
- Time management
 - -The ability to estimate time needed for reaching goals
- Working memory
 - The ability to hold information in awareness while performing a mental operation

3. Attention

- Selective attention
 - -The ability to filter information
- Sustained attention
 - -The ability to actively attend to a task
- Divided attention
 - The ability to attend to two tasks at once
- Shifting attention
 - The ability to shift attention between two or more tasks

http://www.123rf.com/stock-photo/brain_icon.html?mediapopup=14828479

http://www.123rf.com/stock-photo/brain_icon.html?mediapopup=14828479

 $M \vdash I$

4. Behavioral control

- Facilitation/ initiation of "wanted" (re)action
- Inhibition of "unwanted" (re)action —Anticipation
 - -Self-regulation x procrastination
- Flexibility
 - The ability to revis. plans when it is needed
- Goal-directed persistence
 - -The ability to self-motivate
- Social brain
 - -Mentalization
 - -Empathy
 - Social behavior frontal association area
 - ➢Instinct behavior limbic association
 - area

Frontal lobe and mental arousal

- •Right frontal lobe
 - -Bilateral influence
 - -Inhibition
- •Left frontal lobe
 - -Unilateral influence
 - -Activation
- •Left frontal lobe damage
 - –Reduced spontaneous activity–Reduced self-control; impulsive instinct behavior

MUNI

Frontal lobe functions

Motor	Cognitive	Behavior	Arousal
Voluntary movements	Memory	Personality	Attention
Language Expression	Problem solving	Social and sexual	
Eye movements	Judgment	Impulse control	
Initiation	Abstract thinking	Mood and affect	
Spontaneity			

MUNI MED

85. The basic characterization of neocortical functions – primary vs. association areas, topographical overview of cortical functions

- Neocortex majority of cerebral cortex 95% (Paelo 1%, Archi 4%...)
- Basic overview of neocortical cytoarchitecture (6 layers, specific inputs/outputs to from each layer, both vertical and horizontal connections, local differences - Brodman
- Definition and comparison of primary and association areas
 - Somathotopic vs. non-somathotopic
 - Unimodal and polymodal association areas

- Toppographical overview of cortical functions (localization and fuction)
 - Primary areas (motor, somatosensory....)
 - Association (...Parietooccipital "analytic", frontal – "executive", limbic – not a neokortex, but from functional point of view it is a regullar and the most important association area – integration of information from inner and outer environment, neocortex is overrided by hypothalamus)
 - Lateralization of brain functions

MUNI NED