# HLA antigens (Human Leukocyte Antigens)

= human MHC (Main Histocompatibility Complex) antigens

### Polymorphism of human MHC antigens





@ 1997 Current Biology Ltd. / Garland Publishing, Inc.

#### Polymorphism of human MHC antigens



| 2010<br>Numbers of HLA Alleles |       |
|--------------------------------|-------|
| <b>HLA Class I Alleles</b>     | 3,411 |
| <b>HLA Class II Alleles</b>    | 1,222 |
| HLA Alleles                    | 4,633 |
| Other non-HLA Alleles          | 110   |

## HLA genes are localized on 6p chromosome



Vergani & Peakman: Basic & Clinical Immunology, 2nd Edition.

Copyright © 2009 by Churchill Livingstone, an imprint of Elsevier, Ltd. All rights reserved.

## Co-dominant expression of HLA genes



## HLA-I antigens



## **HLA-II** antigens



#### The top surface of HLA-A2





### Binding of antigenic peptide to HLA molecule





Jan Klein, Ph.D., and Akie Sato, Ph.D.: *The HLA System*. N Engl J Med 2000; 343:702-709



#### Interaction of TCR with HLA+antigen



© Elsevier Ltd. Abbas & Lichtman: Basic Immunology 2E www.studentconsult.com

# Superantigens

- Bind to invariant regions of HLA-II and TCR.
- The consequence is a polyclonal stimulation of lymphocytes without presence of antigen.
- This stimulation may lead to autoimmune reaction.
- High quantity of released cytokines may lead to a severe damage of the organism.
- Examples: staphylococcal enterotoxin, erytrogenic toxin of Streptococcus

## Activation of TCR by antigen and superantigen



# Initiation of the immune response, Role of HLA antigens

# Two types of antigens as regards antibody production stimulation

- T- dependent. Initiation of immune response requires antigen presenting cells, T-lymphocytes. Includes majority of antigens.
- T-independent. For the stimulation of B-cells T-lymphocytes (and APC) are not necessary. Polysacharides are typical examples. Only IgM is produced (not other isotypes). No immune memory is induced.



### Role of HLA antigens in immune response



© Elsevier Ltd. Abbas & Lichtman: Basic Immunology 2E www.studentconsult.com

#### Degradation and presentation of antigens on HLA-II molecules



Presentation of endogenous antigens by HLA-I



# Role of HLA antigens in immune response

- HLA-I: Expressed on all nucleated cells. Presentation of endogenous antigens to CD8+ cells. This leads to activation of the CD8+ cell and cytotoxic effect on antigen-presenting cell.
- HLA-II Expressed on professional antigenpresenting cells – monocytes, macrophages, dendritic cells, B-cells.

Presentation of exogenous antigens to CD4+ cells. This leads to activation of the CD4+ (and also the antigen presenting cell).

T-cell stimulation by antigen is a complex reaction



### Costimulatory molecules in T-cell activation



#### Costimulatory signals in T-cell activation



Cytokines (IL-2, IL-12, IL-18)

#### Function of Th1 cells

**Figure 6.27** 



© 2000 Garland Publishing/Elsevier Science

#### Initiation of antibody response in T-cell dependent antigens

Figure 7.8



© 2000 Garland Publishing/Elsevier Science

Activation of immune system by antigen



Figure 1.24



#### Expression of viral antigens on HLA-I molecules



## HLA antigens and diseases

- Various, predominantly immunopathologic, diseases are more frequent in persons with some HLA antigens.
- Presence of the HLA antigen <u>makes a</u> <u>predisposition</u> for development of the disease (increased relative risk), but not cause a disease.
- Majority of the carriers of the "disease associated antigen" are healthy!

# Association of diseases with particular HLA antigens

| Disease                    | HLA antigen    | Relative risk* |
|----------------------------|----------------|----------------|
| Rheumatoud arthritis       | DR4            | 6              |
| Insulin-dependent diabetes | DR3            | 5              |
|                            | DR4            | 6-7            |
|                            | DR3/DR4        | 20             |
|                            | DR3, DQw8/DQw2 | 30             |
| Chronic aktive hepatitis   | DR3            | 14             |
| Coeliakia                  | DR3            | 12             |
| Ankylozing spondylitis     | B27            | 90-100         |

## Ankylosing spondylitis

- Males predominantly affected, frequency 1:1000.
- Usually starts with sacroileitis, consequently vertebral column is affected.
- Fibrotisation and ossification of intervertebral joins and filaments.
- The process leads to decreased mobility and ankylosis in terminal state.
- Ninety-five percent of patients are HLA-27 positive.

# **Ankylosing spondylitis**



# Ankylozing spondylitis and HLA B-27

- Frequency of the disease is 1:1000.
- Ninety-five percent of patients are HLA-27 positive (in Caucasian population).
- But: HLA-27 is present in approximately 5% of people ⇒only 1 / 50 HLA B-27+ persons will develop ankylosing spondylitis!
- Negativity of HLA-B27 almost excludes the diagnosis of ankylosing spondylitis.
- Pozitivity only shows that the patient has the predisposition! It does not make a diagnosis!

# Regulation of the immune response

- Interactions of the components of the immune system
- Characteristcs of the stimulating antigen (PAMPs,
   T-dependent and T-independent antigens)
- Neuroendocrine interactions

## Regulation within the immune system

- Physical interactions among cells through surface molecules transmitting positive or negative signals.
- Chemical signals cytokines, regulation by antibodies (idiotype-antiidiotype interactions)

Costimulatory molecules involved in the interaction between APC and T-lymphocyte



## T-lymphocyte checkpoints

### Stimulatory

- CD27 (ligand CD70 APC),
- CD28 (Ligand CD80, 86 APC),
- CD40 expressed on APC, B-ly (ligand CD154 = CD40L T-ly),
- OX40 activates and memory T-ly (ligand OX49L),
- GITR Treg (ligand GITRL mainly APC)

### Inhibitory

- CTLA-4 expressed on activated T-lymphocytes, Treg (ligand CD80,86) ,
- PD-1 expressed on activated T-lymphocytes (ligand PDL1, PDL2,- activated macrophages, granulocytes)

## CTLA-4

- Expressed mainly on the surface of activated helper T cells.
- Transmits an inhibitory signal to T-cells.
- Similar to the T-cell co-stimulatory protein, CD28 both molecules bind to CD80 and CD86, (B7-1 and B7-2)
- Intracellular CTLA4 is also found in regulatory T-cells and may be important to their function.
- CTLA-4 binds its ligands, captures them from the surface of APC and internalizes them *via* a process that is called transendocytosis, leading to a reduction of APC-mediated T cell activation.
- **Ipilimumab** monoclonal antibody that blocks CTLA-4 function, is used for ,,stimulation" of immune system during immunotherapy of several tumors.
- **Abatacept** fusion protein IgG+CTLA-4 binds CD80/86, prevents T-cell activation, is used as immunosuppressive agent.



Nature Reviews | Immunology

# PD-1 (Programmed cell death protein-1)

- Expressed on activated T-lymphocytes
- Binding to is ligands (PD-L1, PD-L2, expressed mainly on activated macrophages, granulocytes, dendritic cells) leads to apoptosis of antigen specific lymphocytes.
- An important check-point in T-cell regulation
- PD-L1 is expressed on many cancer cells.
- Monoclonal antibody against PD-1 (e.g. **nivolumab**) is used in immunotherapy of tumors.

# THE NOBEL PRIZE IN PHYSIOLOGY OR MEDICINE 2018



#### James P. Allison • Tasuku Honjo

"for their discovery of cancer therapy by inhibition of negative immune regulation"

THE NOBEL ASSEMBLY AT KAROLINSKA INSTITUTET

### Regulation by T-lymphocytes

- Relation between Th1 and Th2 cells
- Various types of regulatory cells

# Development and function of Th1 and Th2 cells



#### Cytokines

- Mediators, ,,tissue hormons", main regulators of the cells of the immune system.
- Produced mainly by the cells of the immune system, also the cells of the immune system predominate as the target cells.
- The effect on the target cell is based on the interaction with specific receptors.
- Usually short half-life
- Nomenclature:
  - IL-1 IL-36 (?)
  - Historical names: interferons, TNF, CSF...

#### Cytokines

- Usually produced by a broad range of cells, bus some cells are usually "main producers" of the concrete cytokine..
- Pleiotropic effect.
- Cytokine network is formed.
- A concrete cytokine may have both stimulatory and inhibitory effect, depending on the the interaction with other cytokines, concentration of the cytokine....

### Effect of cytokines on cells



#### Effects of cytokines

- Pro-inflammatory cytokines: IL-1, IL-6, TNF-α, IL-18
- Stimulation of macrophages: IFN-γ
- Stimulation of granulocytes: IL-8
- T-lymphocytes stimulation: IL-2
- B-lymphocytes stimulation, production of antibodies: IL-4, IL-5, IL-6, BAFF
- Progenitor cells proliferation: IL-3, GM-CSF, M-CFS
- Negative regulators: IL-10, IL-13, TGF-β

#### Interferons (IFN)

- Type I: IFN  $\alpha$ , IFN  $\beta$ : produced by the virus infected cells (fibroblasts, macrophages). In the target cells they inhibit viral replication.
- Type II "Immune": IFN  $\gamma$ : produced by activated  $T_H1$  cells, causes activation of macrophages.

#### Cytokines in pathogensis of diseases

- Atopic diseases: IL-4 stimulates IgE production, IL-5 stimulates eosinophils production.
- Inflammatory diseases (rheumatic, Crohn's disease), systemic response in sepsis various pro-inflammatiory cytokines, TNF-α seems to be the most important.
- Immunodeficiency diseases may be caused by disturbed production of various cytokines (IFNγ, IL-12), or defect of cytokine receptors.

#### Therapeutic use of cytokines

- IFN-α: anti-tumor treatment (malignancies of the lymphatic system, renal cancer, treatment of hepatitis B and C
- IL-2- anti-tumor treatment
- GM-CSF treatment of granulocytopenia
- IFN-β: treatment of multiple sclerosis
- IFN-γ: treatment of some immunodeficiencies

#### Anti-cytokine treatment

- Blockade of function of cytokines by various approaches:
  - Direct blockade of cytokines.
  - Blockade of cytokine receptors.
  - Soluble artificial receptors binding cytokines.
- Most frequently monoclonal antibodies, various fusion proteins...
- Anti-inflammatory treatment: directed against TNF-α, IL-1, IL-6, IL-17, IL-23..
- Anti-tumor treatment blockade of various growth factors (e.g. EGF)

## T<sub>reg</sub> lymphocytes

- Separate subgroup of regulatory T-cells
- Thymic development, although the development in periphery was also documented.
- CD4+CD25+
- Suppress immune reaction against self-antigens
- 5-10% of peripheral CD4+ cells



#### Benefits:

- T-cell homeostasis
- · prevents autoimmune disease
- · tolerance after transplantation
- prevents GVHD
- prevents allergyprevents hypersensitivity

#### **Detrimental effects:**

- down-regulation of tumour immunitydown-regulation of immunity to infection

#### TR-1 lymphocytes

- Induced i periphery by antigen.
- CD4+
- Production of high levels of IL-10, IFN-γ, TGF-β, but not IL-2.
- Similar function have Th3 cells

Interaction idiotype-antiidiotype

