Active and passive immunization

Active and passive immunisation

	<u>Active</u> <u>immunisation</u>	Passive immunisation
Speed of response	Delayed	Prompt
Length of response	Long-term	Short-term
Clinical use	Long-term prophylaxis	Treatment, short-term prophylaxis

Passive immunization

- Substitution of missing specific antibodies protecting against infectious disease or treating the infectious disease.
- Used mainly in infectious diseases or diseases caused by toxins.
- Prompt but short-term effect.
- No immunological memory is induced.

Antisera used in human medicine

- Against bacterial infections: Tetanus (human),
 Diphteria (equine), Botulism (equine)
- Against viral infetions: Hepatitis B (human),
 Rabies (equine), Varicella-zoster (human), CMV
 (human), tick-born encephalitis (human), hepatitis
 A, measles and other viral infections (pooled
 human immunoglobulin)
- Against snake or black widow spider toxins
- Anti Rh

Non-specific immunoglobulin derivates

- Obtained from donors' plasma by ethanol extraction.
- Contains almost exclusively IgG, other isotypes are present only in traces.
- Currently only derivates for intravenous or subcutaneous application are used.

Therapeutic use of immunoglobulin derivates - I

- Replacement treatment in patients with hypogammaglobulinemia.
- It is only IgG substitution, other isotypes are not present.
- In patients with primary hypogammglobulinemia it is usually a life-long treament.

Therapeutic use of immunoglobulin derivates - II

- High-dose intravenouss immunoglobulin treatment can be <u>used in severe inflammatory or</u> <u>autoimmune diseases</u>.
- The mechanism is complex (inhibition of phagocytosis, suppression of B-cells function, effete on T-cell functions).
- The efficacy is variable and in situation difficult to predict.
- Most effective in Kawasaki disease and immune thrombocytopenic purpura (ITP).

Active immunization (vaccination)

- Induction of immune memory by a harmless antigen.
- In the case of infection by a pathogen prompt secondary immune response protects the immunized person from the disease.
- Has protective, but no therapeutic effect.

Edward Jenner

Discovery of small pox vaccine

Primary and secondary immune response

Primary and secondary immune response

The effect of vaccination on infectious

"Classical" vaccines

- Atenuated microbes: mumps, measles rubella (MMR vaccine), rotavirus varicella, BCG (against TBC), cholera, yellow fever, poliomyelitis,
- Inactivated microorganisms: rabies, hepatitis A, tick-born encephalitis, poliomyelitis, cholera, plague. Formerly pertussis.
- Toxoids: tetanus, diphteria

"Modern" vaccines

- Subunit: influenza, pertussis
- Polysaccharide: <u>Heamophilus influenzae B</u>
 (conjugated), Meningococcus (conjugated group B, nonconjugated the remaining serotypes),
 Pneumococcus (conjugated)
- Recombinant: <u>hepatitis B</u>
- Virus-like particles : papillomavirus

"Future (?)" vaccines

- Synthetic polypeptides
- Antiidiotype antibodies
- DNA vaccines
- Vector vaccines
- Antigens inserted into food (bananas, potatoes)

Interaction idiotype-antiidiotype

Other (possible) uses of vaccination approach

- Anti-tumour vaccination both preventive to therapeutic approaches are used
- Prevention ant treatment of Alzheimer disease anti β amyloid or τ -protein
- Contraception most frequently anti-HCG
- Treatment of high blood pressure enzymes of angiotensinrenin-aldosterone system
- Vaccination against autoimmune diseases e.g. against autoimmune TCR.
- Vaccination against drugs (cocaine)