MUNI MED

Experimentally induced renal insufficiency in laboratory animal

Measurement of GFR based on kinetics of renal inulin excretion

Ústav patologické fyziologie LF MU

Kidney functions

- regulation of
 - extracellular volume and blood pressure
 - ion balance
 - acid-base balance
 - excretion of waste
 - production of hormones

Nephron – basic processes

- nephron is the functional unit of the kidney
- filtration
 - movement of fluid from blood into the lumen of nephron
 - only in the renal corpuscule
 - filtrate is produced
- reabsorption
 - moving of substances from the filtrate into the blood
 - typically symport
 - Na/Glu, Na/AK...
 - transport maximum
 - renal threshold for glucose
- secretion
 - adding selected molecules from the blood to the filtrate
 - active proces, more selective then filtration

MED

Filtration barrier

- filtration takes place in the renal corpuscule
- filtration barrier
 - glomerular capillary endothelium
 - fenestrated
 - negatively charged proteins on the surface
 - basement membrane
 - layer of extracellular matrix
 - separates endothelium from epitelial cells of Bowman's capsule
 - glycoproteins, collagen, ...
 - epithelium of Bowman's capsule
 - podocytes
 - foot processes long cytoplasmic extensions leave narrow filtration slit closed by semiporous membrane
 - several unique proteins
- mesangial cells
 - between and around glomerular capillaries
 - contraction
 - actin-like filaments
 - production of cytokines

MUNT

MED

Renal handling of different substances

MUNI Med

Glomerular filtration

- determined by 3 pressures
 - hydrostatic pressure
 - blood flowing through glomerular capillaries
 - 55 mm Hg, higher than opposite pressures
 - colloid osmotic pressure
 - inside glomerular capillaries
 - 30 mm Hg, higher than that of fluid in Bowman's capsule
 - favors fluid movement back into capillaries
 - fluid pressure
 - pressure of fluids in Bowman's capsule
 - 15 mm Hg, opposes filtration
- net driving force
 - 10 mm Hg
- GFR is influenced by 2 factors
 - net filtration pressure
 - filtration coefficient
 - surface area of glomerular capillaries
 - permeability

MED

GFR is subject to autoregulation

- autoregulation
 - local control proces
 - kidney maintains a relatively constant GFR in the face of blood pressure fluctuations
 - 80 180 mm Hg
- mechanisms
 - myogenic response
 - intrinsic ability of vascular smooth muscle to respond to pressure changes
 - tubuloglomerular feedback
 - fluid flow through tubule influences GFR

MUNT

MFD

Laboratory assessment of kidney disease

- glomerular filtration rate (GFR)
 - the best overal index of kidney function
 - approx. 125 ml/min/1.73 m² in young adult healthy individuals
 - indexing to body surface area reduces variation among healthy individuals

- proteinuria
 - diagnostic and prognostic information
 - CKD, AKI, preeclampsia
 - often earliest marker of glomerular diseases

 $\mathsf{M} \vdash \mathsf{D}$

- urinalysis
 - color
 - odor
 - relative density
 - pH
 - glucose
 - ketones

Detection and diagnosis of kidney disease

- lack of signs in early stages of chronic kidney disease (CKD)
 - tests for screening and diagnosis are critical in nephrology
 - measurement of kidney function
 - early detection of abnormalities
 - specific diagnosis
 - determine prognosis
 - measurement of disease progression
 - effectiveness of therapy
 - CKD independent risk factor for cardiovascular disease
 - identification of patients for cardiovascular disease risk factor management

- acute and chronic diseases are common
 - acute kidney injury occurs in 10 20 % of hospitalised patients
 - chronic kidney disease is present in 10 15 % of adults in the general population

 $M \vdash 1$

KDIGO classification of CKD

			Persistent Albuminuria Categories, Description and Range			
				Normal to mildly increased	Moderately increased	Severely increased
				<30 mg/g (<3 mg/mmol)	30-300 mg/g (3-30 mg/mmol)	>300 mg/g (>30 mg/mmol)
GFR Categories (mL/min/1.73 m ²) Stage, Description, and Range	1	Normal or high	≥90	1 if CKD	1	2
	2	Mildly decreased	60–89	1 if CKD	1	2
	За	Mildly to moderately decreased	45–59	1	2	3
	Зb	Moderately to severely decreased	30–44	2	3	3
	4	Severely decreased	15–29	3	3	4+
	5	Kidney failure	<15	4+	4+	4+

MUNI MED

Kidney clearance

- the volume of plasma from which a substance is completely removed by the kidneys per time unit
- unit: volume/time
- indirect measure of glomerular filtration rate (GFR) and renal blood flow
 - GFR
 - clearance of filtered substance
 - perfusion
 - clearance of a substance that is filtered and also secreted (PAHA)

- 2 approaches to determine GFR
 - endogenous marker with stable serum concentration
 - exogenous marker
 - plasma concentration decreases
 - not routinely available because of the complexity of the protocol

 $\mathsf{M} \vdash \mathsf{D}$

Marker of GFR

- requirements
 - stable plasma concentration
 - not protein bound
 - freely filtered by glomerulus
 - not secreted, reabsorbed, or metabolized by the tubules
 - not altering GFR per se
 - easy measurement
 - no interference

Determinants of the serum level of endogenous filtration markers

MUNI Med

Relationship between clearance and GFR

- in the steady state, for a substance handled only be the kidneys that is neither reabsorbed nor secreted
 - amount filtered = amount excreted
 - GFR x $P_x = U_x x V$
 - GFR = U x V/Px
 - cX = volume of plasma filtered (~ GFR)
 - U_x = urine concentration of X
 - V = urine output (ml/min)
 - P_X = plasma concentration of X
- clearance of the substance corresponds to GFR
- reabsorption of a substance X by tubules
 - clearance <GFR
- secretion of substance X by tubules
 - clearance > GFR

 $M \in D$

Creatinine

- proposed as a filtration marker in 1926
- produced by non-enzymatic degradation of phosphocreatine in the muscle
- relatively constant production
 - depends on age, gender and muscle mass
- possible GIT elimination at higher serum levels
- kidney handling
 - free filtration
 - no reabsorption
 - secretion up to 10%
- advantages
 - easy measurement
 - low cost
 - widespread availability of assays

Box 1 Factors associated with changes in serum creatinine, without change in glomerular filtration rate³

Increased serum creatinine

- Increased muscle mass
 - Male gender
 - Black/African race

Diet

- Cooked meat
- Creatine supplementation

Drugs

- Inhibitors of tubular secretion: cimetidine, trimethoprim, fibrates
- Increased creatinine production/release: corticosteroids, vitamin D metabolites

Decreased serum creatinine

- Decreased muscle mass
- Female gender
- Asian/Hispanic race
- Muscle wasting/chronic disease
- Limb amputation
- Vegetarian diet
- Critical illness

 $M \vdash I$

Serum creatinine vs. GFR

MUNI MED

Estimation of GFR from serum creatinine concentration

- CKD-EPI
- formerly
 - Cockroft-Gault
 - MDRD

Gender	Creatinine concentration	Formula
Woman	≤ 0.7	$GFR = 144 \text{ x} (Cr/0.7)^{-0.329} \text{ x} (0.993)^{age}$
woman	> 0.7	$GFR = 144 \text{ x} (Cr/0.7)^{-1.209} \text{ x} (0.993)^{age}$
Man	≤ 0.9	$GFR = 141 \text{ x} (Cr/0.9)^{-0.411} \text{ x} (0.993)^{age}$
Ivian	> 0.9	$GFR = 141 \text{ x } (Cr/0.9)^{-1.209} \text{ x } (0.993)^{age}$

Cystatin C

- cysteine protease inhibitor
- produced by all nucleated cells
- freely filtered at glomerulus
- not secreted by tubules
- reabsorbed and metabolized by tubules
 - urine levels are low
- GFR is estimated from it's serum concentration
- serum concentration
 - depends on age and sex
 - further affected by
 - inflammation, treatment with corticoids, smoking
 - hyperthyreosis, CRP
 - factors that influence cystatin C levels are less defined

 possible combination of cystatin C and creatinine for the estimation of GFR

Measurement of glomerular filtration without collection of urine

- intravenous application of a substance excreted only by glomerular filtration
 - plasma concentration measurement in corresponding intervals
- plasma concentration decreases according to the exponential relation
- concentrations will be plotted with corresponding intervals on semi-logarithmic paper
 - we acquire line which we can use to identify biological half-life $(t_{1/2})$
 - express the time it takes for the blood plasma concentration of a substance to halve its initial concentration (P_o)

MUNI Med

Inulin

- polysaccharide isolated from roots of a variety of plants
- meets all of the criteria for the ideal substance to measure GFR
- not practical for routine clinical applications
 - does not occur naturally in the body
- inulin clearance can be measured based on it's kinetics in extracellular fluid

MUNT

MFD

GFR calculation

- D = amount of inulin applied
 - 25 mg
- P₀ will be deduced from the curve
 - concentration in time when substance was injected = projection of line with axis Y
 - extrapolated value in relation to time when the dose was administered
- $t_{1/2}$ will be deduced from the curve

Experimental procedure

- general anesthesia
- middle laparotomy
- experimental procedure
 - ligation of a. renalis sinistra (n = 6)
 - control group without ligature (n = 6)
- accessing v. jugularis and application of inulin
 - 25 mg/1,5 ml of physiologic solution)
- blood sampling
 - thoracotomy after 5, 10, 15, 20, 25 and 30 min
 - heart puncture 1,5 ml of blood
- sample analysis
 - spectrophotometric determination of inulin concentration
- calculation of P_0 and $\mathsf{t}_{1/2}$

MED