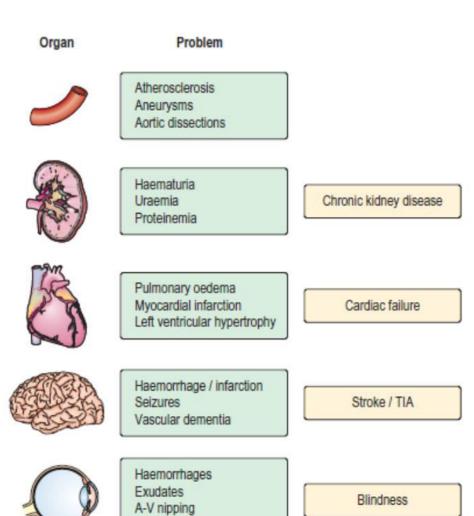


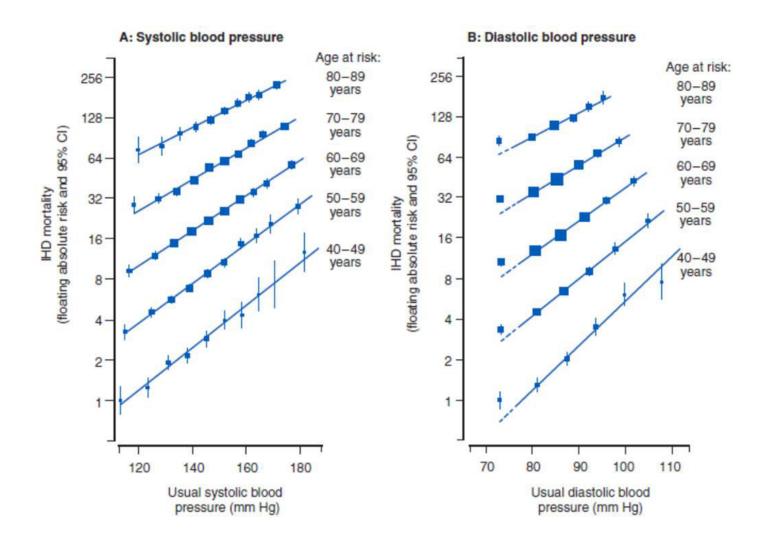
Secondary hypertension

Renal ischemia part 2


Conceptual definition of hypertension

- blood pressure > 140/90 mm Hg
- artificial dichotomy between normoand hypertension
- the level above which harm is accrued and treatment below that level mitigates the harm
- benefit of drug treatment have been definitely established in randomized placebo-controlled trials

Hypertension and target organ damage


- types
 - primary and secondary
- hypertension
 - major risk factor for premature cardiovascular disease
 - leading cause of death worldwide
 - incidence continues to grow
- asymptomatic nature
- treatment remains most commonly empiric
 - often 3 or more pharmacologic agents with complementary mechanisms
- hypertension causes
 - 54 % of stroke
 - 47 % of ischemic heart disease
 - of all modifiable risk factors, hypertension is exceeded only by smoking

Papilloedema

BP and ischemic heart disease mortality

Framingham study

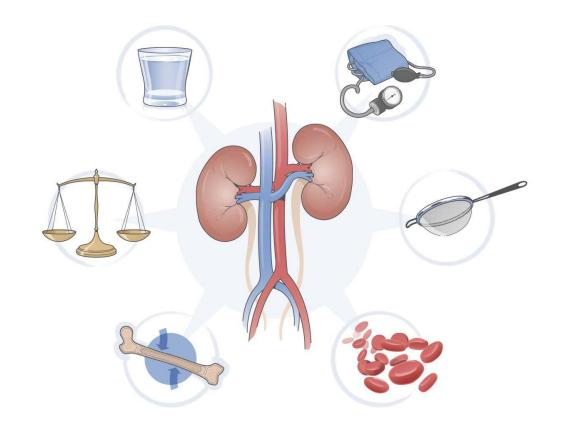
- since 29.9.1948, Framingham, Boston, MA
- identification of major cardiovascular risk factors
 - blood pressure, cholesterol, triglycerides, HDL, smoking, obesity, diabetes, physical inactivity, age, gender (male) a psychosocial factors
- Initial cohort
 - 5209 people, 30-62 years, detailed examination every 2 years
- II. cohort (since 1971)
 - 5,124 adult offspring
- III. cohort
 - 3,500 children (grandchildren of original participants)
- late clinical manifestations of long-term uncontrolled hypertension
 - myocardial infarction, stroke
 - heart failure
 - kidney failure
 - retinopathy

Major forms of secondary hypertension

- renal disorders
 - parenchymal
 - renovascular
- endocrine disorders
 - Cushing syndrome
 - primary aldosteronism
- vascular disorders
 - coarctation of the aorta
- pregnancy

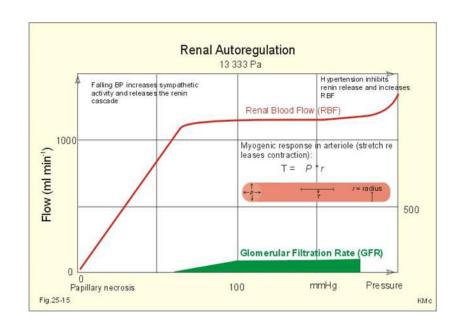
- exogenic cause
 - medication
 - contraception
 - drugs
 - cocaine, amphetamine
 - licorice

Screening for secondary hypertension

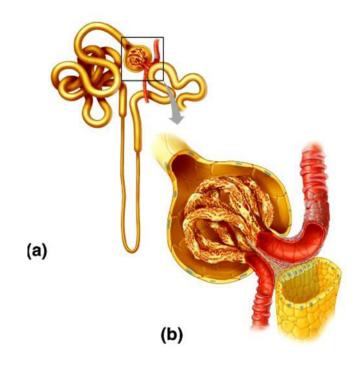

- secondary forms are rare and screening for them expensive and laborious
 - it is not cost effective to search for secondary causes of hypertension in every patient
- testing requires clinical suspicion and knowledge of limitations of different tests

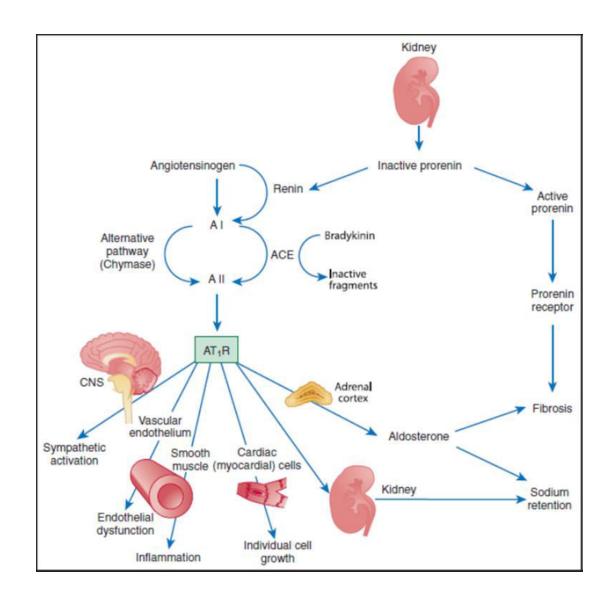
- general principles
 - new onset hypertension if <30 or >50 years of age
 - hypertension refractory to treatment (>3-4 medications)
 - specific clinical/lab features typical for secondary HT
 - hypokalemia, differential BP in arms, episodic hypertension...

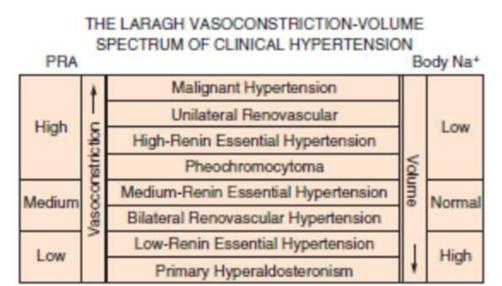
Kidney function


- regulation of
 - extracelllular fluid volume and blood pressure
 - osmolarity
 - acid-base balance
 - ion balance
 - excretion of wastes
 - production of hormones
- kidney perfusion
 - 20 25 % of minute heart volume
 - 1200 ml/min, 90 % goes to cortex
 - markedly more than would correspond to kidney weight
 - reasons for high perfusion
 - high energy need of tubular cells
 - production of primary filtrate in glomeruli
 - 20 % of perfusion
 - 150-180 l/day 90 % reabsorption
 - glomerular filtration rate (GFR)
 - 100-120 ml/min

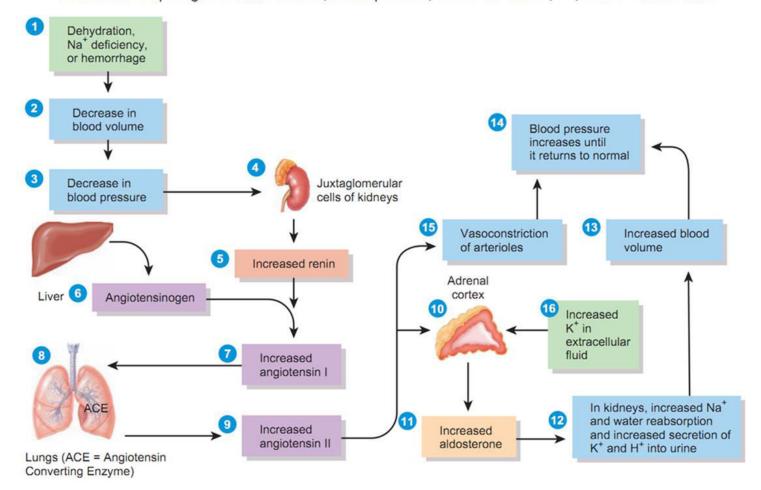
Regulation of kidney perfusion


- GFR is remarkably constant over a wide range of blood pressures
 - 80-180 mm Hg
- autoregulation
 - locally controlled proces
 - relatively constant GFR in the face of normal fluctuations in blood pressure
 - protects filtration barrier from high blood pressure
 - myogenic feedback
 - intrinsic to the smooth muscle blood vessels.
 - if the pressure within a vessel is suddenly increased, the vessel responds by constricting
 - vascular smooth muscle cells depolarize when stretched, leading to contraction
 - tubuloglomerular feedback
 - changes in the Na⁺, Cl⁻, and K⁺ concentrations in the tubular fluid are sensed by the macula densa via the Na⁺-K⁺-2Cl⁻ cotransporter

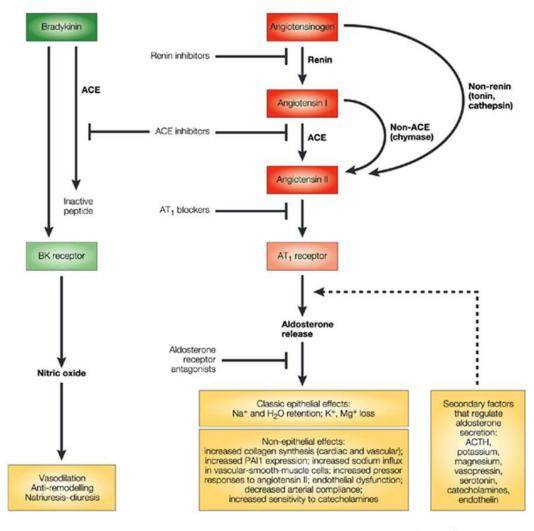

Juxtaglomerular apparatus


- juxtaglomerular (JG) cells
 - specialised muscle cells
 - advanced endoplasmic reticulum and Golgi apparatus
 - production of renin
 - blood pressure receptor
- macula densa
 - close to JG cells
 - senzitive to NaCl
- mesangial cells
 - specialized pericytes
 - contraction
- juxtaglomerular apparatus
 - sympathetic innervation

RAAS overview


Normal BP = (PRA) × (Na++Volume)

RAAS overview


Regulation of aldosterone secretion by the renin-angiotensin-aldosterone (RAA) pathway.

Aldosterone helps regulate blood volume, blood pressure, and levels of Na+, K+, and H+ in the blood.

RAAS manipulation

Renal parenchymal disease

- 2 − 5 % cases of hypertension
- mechanisms
 - common pathway
 - impaired renal autoregulation
 - high perfusion pressure
 - damage of the glomerular cells
 - stiffness of the arteries
 - ↑ SBP, ↓ DBP, ↑ pulse pressure

TABLE 9-3

Features Associated with High BP in Chronic Kidney Disease

Preexisting primary (essential) hypertension

Extracellular fluid volume expansion

Arterial stiffness

Renin-angiotensin-aldosterone system stimulation

Increased sympathetic activity

Endothelin

Low birth weight with reduced nephron number

Decrease in vasodilatory prostaglandins

Obesity and insulin resistance

Sleep apnea

Smoking

Hyperuricemia

Erythropoietin administration

Parathyroid hormone secretion/increased intracellular calcium/hypercalcemia

Renal vascular disease and renal arterial stenosis

Aldosterone-induced fibrosis and sodium retention

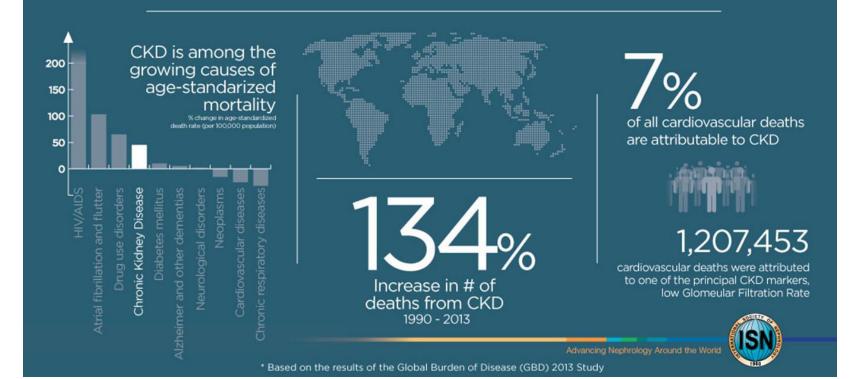
Asymmetric dimethylarginine

Advanced glycation end products

Chronic allograft dysfunction

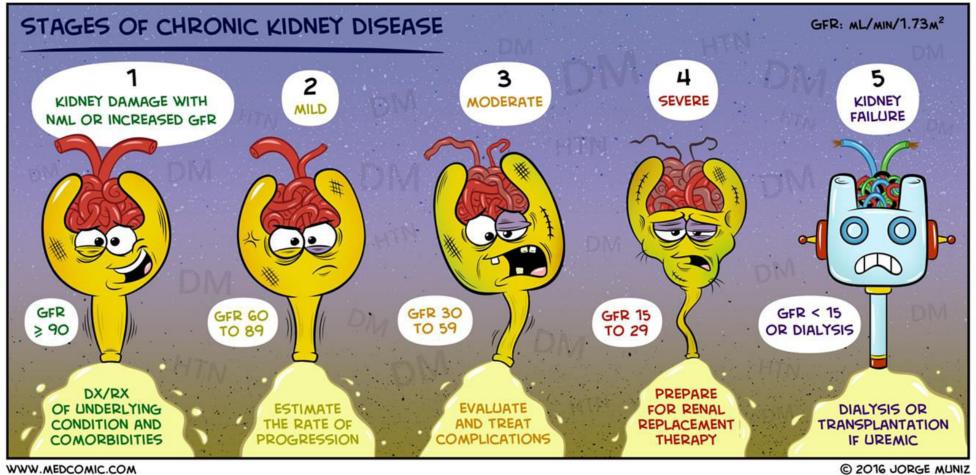
Cadaver allografts, especially from a donor with a family history of hypertension

Immunosuppressive and corticosteroid therapy Heritable factors



CHRONIC KIDNEY DISEASE (CKD) Impact on global mortality

956,246 deaths directly related to CKD in 2013



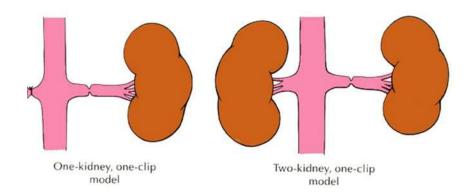
 $\underset{\text{deaths worldwide}}{1_{in}57}$ due to CKD

CKD stages

Renovascular hypertension

- 1-2 % cases of hypertension
 - atherosclerosis
 - 70 90 % of cases
 - in older adults
 - fibromuscular dysplasia
 - more common in women
 - non-inflammatory vascular disease
 - affects more commonly young women
 - often in the 3rd decade
- mostly partial obstruction of one main renal artery
 - decreased RBF, activation of RAAS
- suspiction of renal artery stenosis
 - hypertension in previously normotensive person
 - < 30 or > 50 years
 - severe or resistant hypertension
 - smoking
 - accelerated hypertension in previously controlled person
 - worsening renal function after RAS inhibition

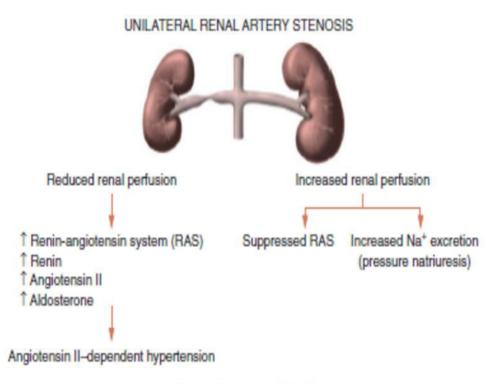
- reduction in renal perfusion by 50 %
 - immediate and persistent increase of renin secretion from ischemic kidney
- renovascular vs. primary hypertension
 - hypokalemia
 - no family history of hypertension
 - duration < 1 year
- administration of ACE inhibitors may cause a decline in renal function
- diagnostic tests
 - assessment of renal function, RAAS
 - imaging studies
- treatment
 - blood pressure control
 - renal function stabilization
 - angioplasty


Renovascular hypertension

- atherosclerosis
 - 90 % of RVH
 - affects mainly proximal third of the main renal artery
 - seen mostly in older men
 - bilateral in 30 %

- fibromuscular dysplasia
 - 10 % of RVH
 - noninflammatory vascular disease
 - involving mainly distal 2/3 and branches of renal arteries
 - rarely bilateral
 - predilection in the right renal artery
 - appears most commonly in younger women

Goldblatt's experimental hypertension

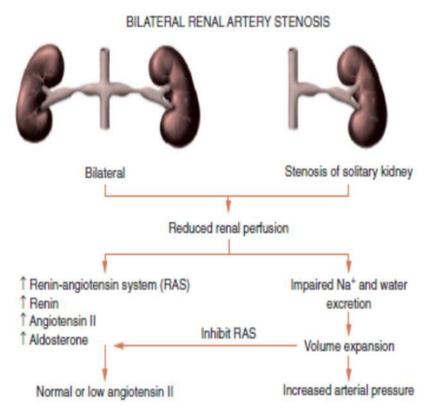


- 2 kidneys/1 clip (2K1C)
 - hypertension + preserved regulation of extracellular volume
- 1 kidney/1 clip (1K1C)
 - hypertension + disorder of extracelllular volume regulation

2K1C hypertension

Effect of blockade of RAS
Reduced arterial pressure
Enhanced lateralization of diagnostic tests
Glomerular filtration rate (GFR) in stenotic kidney may fall

Diagnostic tests

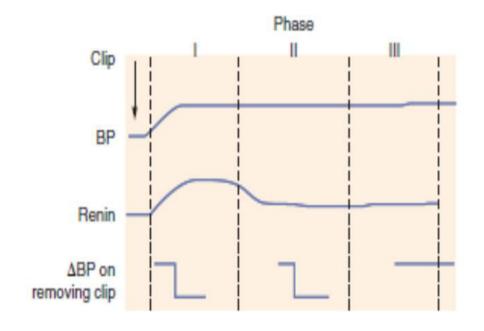

Plasma renin activity elevated

Lateralized features, e.g., renin levels in renal veins, captopril-enhanced renography

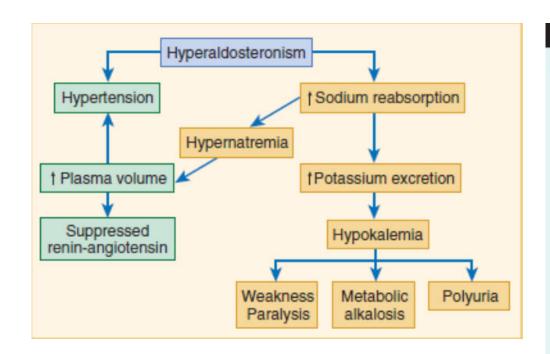
- unilateral stenosis may be present with an intact contralateral renal artery
- counterregulatory processes in the contralateral kidney
 - sodium excretion in response to increased blood pressure

1K1C hypertension

Effect of blockade of RAS
Reduced arterial pressure only after volume depletion
May lower GFR


Diagnostic tests
Plasma renin activity normal or low
Lateralized features; none

 bilateral stenosis and 1K1C lead to more severe hypertension


Phases of experimental hypertension

- early phase
 - elevated renin, hypertension
- second phase
 - blood pressure responds to clip removal
- third phase
 - no reduction of blood pressure after clip removal
 - microvascular injury of contralateral kidney
 - oxidative stress?

Mineralocorticoid-induced hypertension

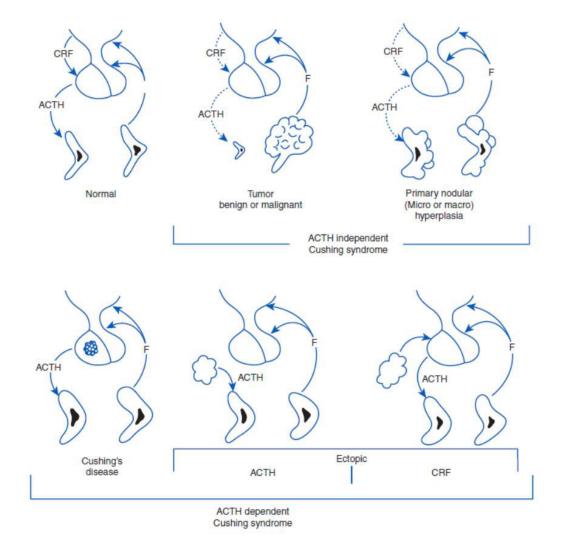
TABLE 45-5 Syndromes of Mineralocorticoid Excess Adrenal origin Aldosterone excess (primary) Aldosterone-producing adenoma Bilateral hyperplasia Primary unilateral adrenal hyperplasia Glucocorticoid-remediable aldosteronism (familial hyperaldosteronism, type I) Adrenal carcinoma Extra-adrenal tumors Deoxycorticosterone excess Deoxycorticosterone-secreting tumors Congenital adrenal hyperplasia 11B-Hydroxylase deficiency 17α-Hydroxylase deficiency Cortisol excess Cushing syndrome from ACTH-producing tumor Glucocorticoid receptor resistance Renal origin Activating mutation of mineralocorticoid receptor Pseudohypoaldosteronism, type II (Gordon) 11β-Hydroxysteroid dehydrogenase deficiency Congenital: apparent mineralocorticoid excess Acquired: licorice, carbenoxolone

Primary aldosteronism

- the most common of syndromes with mineralocorticoid excess
- common in patients with resistant hypertension
- renin-independent overproduction of aldosterone
- several types
 - solitary aldosterone-producing adenoma
 - bilateral hyperplazia

- profibrotic effect of aldosterone
 - more CV events in patients with primary aldosteronims than in patients with primary hypertension

Hypertension induced by cortisol


- Cushing syndrome
 - serious disease
 - hypertension in ~ 75 %
 - often difficult to treat
 - incompletely controlled
 - 4-fold excess of mortality

Clinical Features of Cushing Syndrome

Clinical Features	Approximate Incidence (%)
General	
Obesity	80-95
Truncal	45-95°
Hypertension	70-90
Headache	10-50
Skin	
Facial plethora	70-90
Hirsutism	70-80
Purple striae	50-70°
Bruising	30-70°
Neuropsychiatric	60-95
Gonadal dysfunction	
Menstrual disorders	75–95
Impotence or decreased	65–95
libido Musculoskeletal	
Osteopenia	75-85
Weakness from	30-90°
myopathy	
Metabolic	
Glucose intolerance/	40-90
diabetes	
Kidney stones	15-20

Causes of endogenous Cushing syndrome

Classification and mechanisms of hypertension

ACTH dependent

Pituitary ACTH (Cushing disease)
Ectopic ACTH syndrome
Ectopic CRH syndrome
Macronodular adrenal hyperplasia

ACTH independent

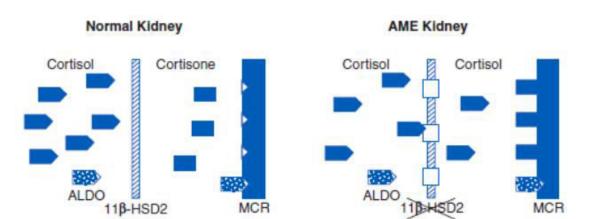
Adrenal adenoma

Adrenal carcinoma

Micronodular hyperplasia

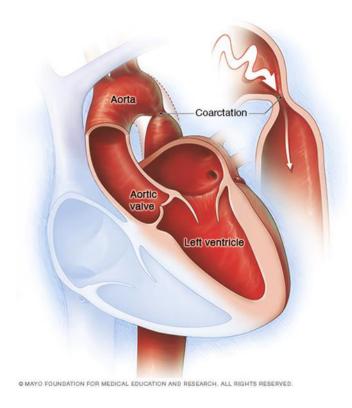
Adrenal hyperplasia from other

stimuli (e.g., GIP)

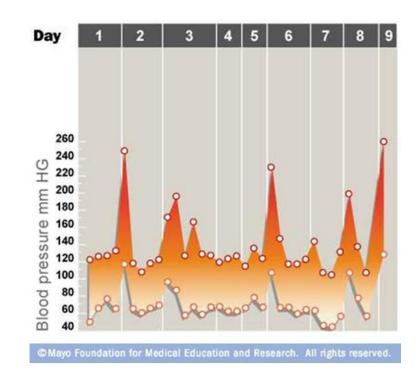

Exogenous glucocorticoid intake

- mechanisms of hypertension
 - Na retaining action of cortisol
 - ↑ cortisol overwhelms 11β-HSD2
 - cortisol acts on mineralocorticoid receptor (MR)
 - direct action on smooth muscle cells
 - ↑ production of mineralocorticoids
 - ↓ activity of eNOS
 - ↑ angiotensinogen

Increased access of cortisol to MR

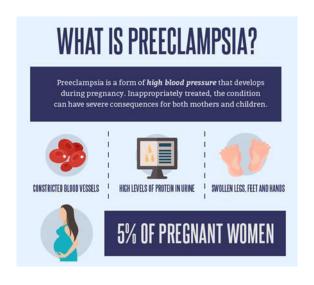

- deficiencies of 11β-HSD2
 - enzyme deficiency
 - autosomal recessive
 - apparent mineralocorticid excess (AME)
 - enzyme inhibition
 - glycerrhizic acid
 - confectionery licorice
 - 50 g/daily for 2 weeks 个BP
 - treatment
 - competitive blockade of MR with spironolactone

Coarctation of aorta


- distal to the origin of subclavial arteries
- signs
 - hypertension in the arms
 - weak or absent femoral pulses
 - BP on lower extremities is normal or low
- reduced blood flow to the lower part of the body
 - kidneys RAAS activation
 - increased stroke volume
- probably also generalized vasoconstrictor mechanism
- diagnosis
 - pressure diference > 20 mm Hg
- treatment
 - surgical
 - angioplasty

Pheochromocytoma

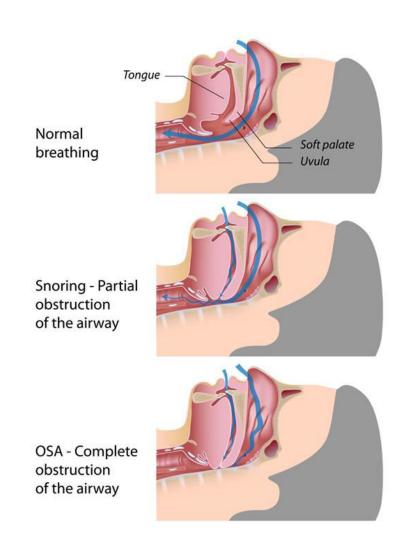
- tumor of chromaffin tissue
 - adrenal medulla
 - sympathetic ganglia
- 0.1 0.5 % of people with hypertension
- can cause serious hypertensive crisis
- production of epinephrine and norepinephrine
 - paroxysmal or continuous
 - episodes of headache, sweating, palpitations
 - weakness, fatigue, weight loss
 - marked BP variability
- diagnostic test
 - urinary catecholamines
 - localization of tumor
- treatment
 - surgery
 - blockade of catecholamines action or synthesis


50 % have paroxysmal episodes of hypertension other 50 % have sustaines hypertension some may be normotensive

Hypertension in pregnancy

- 5-10 % of all pregnancies
- blood pressure changes during pregnancy
 - decrease during the first semester
 - lowest in the second trimester
 - rise during the third trimester
- changes of cardiac output (CO) and peripheral vascular resistence (PR)
 - large increase of CO in early pregnancy
 - high throughout pregnancy
 - decreased PR
- pregnancy is normally accompanied by
 - increased renin, ang I and II, estrogen, progesterone and aldosterone

- women with preeclampsia
 - new-onset hypertension with proteinuria
 - develops after 20 weeks of pregnancy
 - sensitive to the RAAS
 - also responsive to other vasoconstrictors
 - insulin resistence may predispose to hypertension


Oral contraceptive drugs and hypertension

- the most common cause of secondary hypertension in young women
- mechanism
 - volume expansion
 - estrogens and progesterons cause sodium retention

Sleep apnea syndrome

- prevalent in middle-aged and older adults
- mechanisms
 - obesity
 - craniofacial changes
 - alteration in upper airway muscle function
- consequences
 - intermittent hypoxia and hypercapnia
 - recurrent arousals and increase in respiratory efforts
 - secondary sympathetic activation, oxidative stress and systemic inflammation
 - daytime sleepiness

Malignant hypertension

- acute and life-threatening condition associated with a sudden increase in BP
 - usually in younger people
 - black men, kidney damage
 - diastolic > 120 mm Hg
- organ dysfunction
 - hypertensive encephalopathy
 - cerebral vasoconstriction
 - homeostatic response
 - brain edema
 - damage of kidney vessels
 - ↑ creatinine, urea
 - metabolic acidosis, hypocalcemie, proteinuria

- prolonged exposure to high BP
 - arterioles injury
 - intravascular coagulation and RBC fragmentation
 - renal damage
 - ↑ creatinine
 - proteinuria

Practical part

- weight of
 - animal
 - kidneys
 - heart
- suture
- microscopic detection of renin

