Treatment of Ischaemic Heart Disease / Coronary Artery Disease/

ISCHAEMIC HEART DISEASE

Group of diseases with the presence of myocardial ischemia, which occurs on the basis of the pathological process in the coronary vessels.

- Organic atherosclerosis (95%), thrombus, arteritis...
- Functional coronary spasm or combined

Reducing the flow in coronary arteries>>> ischemia

Ischaemic Heart Disese is part of

CARDIOVASCULAR DISEASES

Together with...

- Hypertenzion
- Chronic Hearth Failure
- Dysrhytmia

Risk factors and stratification

Risk factors

- gender
- Smoking status
- Cholesterol level
- Systolic blood pressure

RISK STRATIFICATION of CARCIOVASCULARS
DISEASE

Strategy and type of pharmacotherapy

CARDIOVASCULAR DISEASES

Inhibition of RAAS

ACE inhibitors (ACEi)

AT₁ receptor antagonists (sartans)

Renin inhibitors

Natriuretic peptides

Inhibiton of sympathetic system*

Antagonization of $\beta + /- \alpha$ receptors

Increase of diuresis/natriuresis

Diuretics

^{*}Activation durig acute phase (NA, dobutamin)

Vasodilatation

Ca-channel blockers (CCB)

Activation of pottasium-channel (A-K_{ATP})

Nitrates and NO donors

Periferal vasoprotective drugs

Inhibitors of phosphodiesterase-5 (PDE-5)

↑myocardial contraction

Ca senzitizers

Inhibitors of phosphodiesterasis-3 (PDE-3)

Cardiac glycosides

Coordination of cardiac rhytm

Antidysrhytmics

Drugs with positive effect on vascular endothelium

Vazoprotectives

ISCHAEMIC HEART DISEASE

Risk factors:

- Should not be influenced age, gender, family history
- Should be influenced hypertension, hyperlipoproteinaemia, smoking, stress, obesity, physical inactivity, dietary habits

ISCHAEMIC HEART DISEASE

CLASSIFICATION

✓ Acute (unstable) CAD

Unstable angina

Acute myocardial infarction

Sudden death

✓ Chronic (stable) CAD

Silent ischaemia

Angina pectoris

Syndrom X

Dysrhytmias

Mixed AP

Exertional AP

Variant AP

ANGINA PECTORIS

- Most frequent clinical manifestations of IHD caused by the myocardial ischemia, in which the patient has chest pain (stenocardia).
- Imbalance between myocardial oxygen supply and demand
- Anti-anginal drugs act indirectly by smooth muscle relaxation of coronary artery and reducing cardiac work

ANGINA PECTORIS

Classification of severity:

- I. stenocardia provoked by extraordinary exertion
- II. stenocardia provoked more than usual exertion
- III. stenocardia provoked by regular exertion
- stenocardia

IV. stenocardia provoked by minimal exertion or at

rest

Therapy of Ischaemic Heart Disese:

- Non-pharmacological life-style, smoking, diet...
- Pharmacological

DRUG ELUTING STENTS

cytostatics (tacrolimus, sirolimus, paclitaxel...) slowly releases a drug to block cell proliferation

Therapy

- 1. Stopping or slowing progress of atherogenesis
 - **⇒ LIPID-LOWERING DRUGS**

Compenzation of DM ⇒ **ANTIDIABETICS**

- 2. Provention of vascular thrombus occlusion
 - **⇒ ANTIPLATELET DRUGS**

Obesity as disease ⇒ **ANTI-OBESITY DRUGS**

3. Improvement of coronary blood flow

Drugs that improve improve perfusion of the myocardium

- **⇒ 1. NITRATES and NO donors**
 - 2. CALCIUM CHANNEL BLOCKERS dihydropyridines
 Pottasium-channel activation

- 4. Reducing the metabolic demand (slow the heart)
- **⇒ 3. BETA-BLOCKERS**
 - 2. CCB -non-dihydropyridines
 - **4.** IVABRADIN (I_f)

VASODILATOR DRUGS

Play a major role in the treatment of cardiovascular diseases (able to relax vascular smooth muscle)

VASODILATION should be achieved by:

A. Plasma membrane voltage-dependent calcium channel

- Calcium antagonists ⇒ CCB
- Activation of ATP-sensitive pottasium channel ⇒ A-K_{ATP}

B. Increasing cellular concentration of cAMP/cGMP

- Nitric oxide increase ⇒ nitrates and NO donors
- Inhibition of phosphodiesterase-5 ⇒ PDE-5 inhibitors
- C. <u>Increase cytoplasmic cyclic nucleotides</u> ⇒ prostacyclines
- D. Blocade of endothelin system
 - inhibition of endothelin rcp. ET_A a $ET_B \Rightarrow$ antagonists of endothelin rcp.

CALCIUM Channel Blockers (CCB)/ CALCIUM Antagonists / CALCIUM Entry Blockers

 Ca²⁺ channel blockers/ Ca²⁺ antagonists/ Ca²⁺ entry blockers/ works by blocking voltage-gated calcium channels type L in <u>cardiac muscle</u> and <u>blood vessels</u>.

sinoatrial node (SA) and atriventricular node (AV) — Ca²⁺ initiates action potentials ⇒ controlling cardiac rate and rhythm

 \downarrow intracellular calcium leading to \downarrow cardiac contractility

In blood vessels \downarrow vascular smooth muscle and therefore \uparrow vasodilation. Vasodilation decreases total peripheral resistance

Mechanism of Action

block cellular entry of Ca²⁺ through voltage-gated L-type channels

Cardiac action (SA, AV nodes)

negative inotropic, chronotropic and dromotropic effects

Vascular Smooth Muscle

(generalised arterial/arteriolar dilatation, coronary vasodilatation) (biliary, urinary tract, uterus – less important therapeutically)

Vazodilatation

⇒ periferal resistence decreased

"selectivity" of CCB

Classification

DIHYDROPYRIDINES

accoring to half life...

 Greater effect on vascular smooth muscle and coronary vessels than on the hearth

= relatively smooth muscle selective

NON-DIHYDROPYRIDINES

 Preferentially effects the heart (AV block and cardiac slowing by their actions on conducting tissue, but causes reflex tachycardia)

= relatively cardioselective

DIHYDROPYRIDINES

Short half-life
NIFEDIPIN

immediatelly causes vazodilatation ⇒ reflex tachycardia

SR drug form

Intermediatte half-life

FELODIPIN

SR drug form

NITRENDIPIN, LERKANIDIPIN

Long half-life

AMLODIPIN, LACIDIPIN

Highly vasoselective

DIHYDROPYRIDINES

<u>INDICATION</u>

Hypertenzion (monotherapy or combination)

CONTRAINDICATION

Cardiogenic shock, acute hearth failure

ADVERSE EFFECTS

 Dose-dependent perimaleolar oedema flushes, gingival hyperplasia (dose-dependent).

Conventional drug forms

Headache, flushes, palpitation, hyponsension, rexlef tachycardia

CCB

NON-DIHYDROPYRIDINES

DILTIAZEM, VERAPAMIL

SA a AV nodes:

- negative chronotropic \$\psi\$ action potential in SA node
- negative dromotropic effect \$\Pi\$ rate of conduction
- negative batmotropic effect ↓ irritability

ANTIDYSRHYTMI
CS IV. class
(Vaughan/Williams)

(SR – slow release forms)

NON-DIHYDROPYRIDINES

<u>INDICATION</u>

- Treatment and prophylaxy of supraventricular tachyarhytmias
- Treatment of preeclampsia (verapamil)

CONTRAINDICATION

- SA blocade, AV-blocade type 2.a 3.
- bradycardia (↓ 50 beats/min)
- Non-compensated heart failure with ↓ systolic function
- Gravidity (exemption for life-threatening condition eclampsia)

NON-DIHYDROPYRIDINES

ADVERSE EFFECTS

- Negative inotropia bradykardia
- obstipation (smooth muscle GI) (VERAPAMIL)

PHARMACOKINETICS

- High protein binding
- Variable bioavailability (0-30%)
- Variabile half-life

cytochrom P450 involved - inhibitors CYP3A4 and substrate of

Phenobarbital, fenytoin, karbamazepin ⇒ decrese plasmatic level of verapamil and diltiazem

POTTASIUM-CHANNEL ACTIVATORS (A-K_{ATP})

Opening of K_{ATP} leads to ↑ sarcoplasmatic pottasium draslíku ⇒ membrane hyperpolarisation ⇒ **ativation of Ca**_L **decreased**

I: patients who remain symptomatic despite optimal management

MINOXIDIL, NIKORANDIL currently not available in CZ

Organic Nitrates

MECHANISM OF ACTION

Metabolised to nitric oxide – stimulation of guanylyl cyclase \Rightarrow incerasing formation of cGMP $\Rightarrow \downarrow$ intracellular calcium \Rightarrow

Smooth muscle relaxation

Nitrates

Enzymatic step – reaction with tissue sulfhydryl (-SH) groups

- S-nitrosothiol and NO release

NO donors

Should be administered with prolonged effect

Depletion of free SH-groups

⇒ tolerance (with longeracting drugs)

Nitrates

Nitroglycerin was synthesized by the chemist Ascanio Sobrer in 1847 Nitroglycerin is converted to nitric oxide – NO - identical to the 'endothelium-derived relaxing factor' (EDRF)

- LOCAL: the direct effect on coronary artery tone dilation of coronary arteries
- SYSTEMIC: venorelaxation consequent reduction in central venous pressure – reduce <u>preload</u>
- Relaxation of larger muscular arteries reduce <u>afterload</u>

Drugs Short-acting

- GLYCERYL TRINITRATE
 - (Nitroglycerin®)
 t_{1/2} 3 minutes
 risk of tachyfylaxis / repeated admin.
- ISOSORBID DINITRATE (ISDN)

active metabolite ISMN with longer t_{1/2}

<u>INDICATION</u>

Treatment of stenokardias (sublingual)

Unstable angina i.v.

(i.v. infusion, higher doses lead to hypotension)
Acute heart failure, HT crisis, aortal aneurysm

ADMINISTRATIONSUBLINGUAL / i.v. / INHALATION

Short – acting (15-30 min)

DRUGS

Long-acting

INDICATION

- ISOSORBID 5-MONONITRÁT (ISMN) $(t_{1/2} 5 \text{ hod.})$ metabolised more slowly
- Taken twice a day for prophylaxy morning and lunch, nitrate-free period to avoid tolerance
- MOLSIDOMIN

Prophylaxy of Stable angina

ADMINISTRATION

Orally swallowed, SR formulation

ADVERSE EFFECTS

Usually well tolerated

- headache
- Ortostatic hypotension
- Tachycardia
- Flush
- Long-acting nitrates tolerance, short-acting tachyphylaxis

CONTRAINDICATION

Concomitant administration of PDE-V inhibitors (sildenafil,...)

VASODILATATORS...

- Inhibitors of phosphodiesterase-5 (PDE-5-inhibitors)
- Endothelin-1 receptor antagonists
- Syntetic analogs of prostacyclins

Inhibitors of phosphodiesterase-5 (PDE-5-inhibitors)

MECHANISM OF ACTION

Specifically inhibit isoform 5 of cGMP-dependent phosphodiesterase in in the corpus cavernosum ⇒ increased levels of cGMP, producing smooth muscle relaxation in the corpus cavernosum and allowing inflow of blood

CONTRAINDICATION

- Arterial and orthostatic hypotension
- Aortal stenosis
- Hypertrofic cardiomyopathy
- Retinitis pigmentosa
- Retinopathy

DRUGS

Liší se rychlostí nástupu účinku a jeho délkou

INDICATION

Erectile dysfunction

Onset 1 hod; effect 4-6 hours

SILDENAFIL VARDENAFIL

Pulmonary hypertension

Onset 2 hod; effect 24-48 hours

TADALAFIL

BHP

Pulmonary hypertension

Onset 30 min; effect 12-24 hours

AVANAFIL

ADVERSE EFFECTS

- headache, flush, dyspepsia, nasal congestion
- Mild or moderate transient difference in colour discrimination (blue/green)
- priapism

RARE: Vasodilatation and hypotension, dysrhytmia and heart failure

SILDENAFIL A
VARDENAFIL inhibit
partly also PDE 6
involved in
phototransduction
cascade in retina

Drug interactions!

nitrates or another drugs 个cGMP

Endothelin-1 receptor antagonists

INDICATION

Pulmonary hypertension

MECHANISM OF ACTION

Block binding of endothelin-1 to ET_A a ET_B – pulmonary arthery pressure decreased

DRUGS

BOSENTAN - competitive non-selective antagonist of rcp ET_A i ET_B AMBRISENTAN -selective antagonist of receptoru ETA Teratogenic.

ADVERSE EFFECTS

Hepatotoxicity (FDA requires monthly monitoring of liver function tests), anaemia (hematocrit)

Syntetic analogs of prostacyclins

INDICATION

Pulmonary hypertension

Prostacyclins = prostaglandines PGI2

MECHANISM OF ACTION

Increase cyclic nucleotides by increasing adenylyl cyclase aktivity – directly acting vasodilatators

DRUGS

EPOPROSTENOL: only i.v. infusion, t_{1/2} 3-5 min.

ILOPROST: $t_{1/2}$ 20-25 min.

i.v., peroral or inhalation

TREPROSTINIL: s.c. nebo i.v. infusion

3. Improvement of coronary blood flow

Drugs that improve improve perfusion of the myocardium

⇒ NITRATES and NO donors CALCIUM CHANNEL BLOCKERS - dihydropyridines Pottasium-channel activation

⇒ **BETABLOKÁTORY** 4. Reducing the **BKK**-non-dihydropyridiny **BRADINY**

metabolic demand (slow the heart)

B-adrenoceptor antagonists (beta-blockers, β sympatolytics)

MECHANISM OF ACTION

Reverzible antagonization of adrenergic β receptors (antagonists of endogenous katecholamins)

Competitive antagonists (intrinsic activity = 0) or

Partial agonists (ISA - intrinsic sympathomimetic activity)

Non- selective cardioselective

Cardiovascular effects of BB

Antihypertensive action

reducing sympathetic activity, decreased heart rate, reduction in cardiac output, reduction of renin release

Myocardial action

negative chronotropic (HR), inotropic (contractility) dromotropic (vedení vzruchu) a bathmotropic (excitability)

Cardioprotective effects

- antiischaemic (decreased heart rate, reduction in cardiac output ⇒ decreased myocardial oxygen consumption)
 - antidysrhythmic (II. class) ⇒ better coronary flow

Antagonisation of endogenous katecholamins (through β rcp.)

- bronchoconstriction
- reduction of renin release
- metabolic effects (↓glycogenolysis, lipolysis)
- Antiglaucomatic effect

Long term use of \beta blockers \Rightarrow hypersensitization, receptor up-regulation \Rightarrow **REBOUND FENOMEN**

CLASSIFICATION

- lipophylic
- hydrophylic

- Selectivity (non-selective x cardioselective)
- Partial agonistic aytivity (with ISA x withou ISA)
- \circ Combined effect (antagonisation of α -receptor, direct vasodilatation)

ISA - β_1 **rcp.** \Rightarrow increase the heart rate at rest, but reduce during exercise

PHARMACOKINETIC

Depends on lipophylity/hydrophylity

Lipophylic

- High resorption from GI
- High first pass efect and protein-binding
- Longer t_{1/2}
- Central effects (cross HEB)
- CYP2D6 metabolization

METOPROLOL

Preferably SR form

- ✓ Genetic polymorphism ⇒ <u>AUC</u> <u>difference 10-30x</u>
- ✓ Drug interaction with CYP2D6 inhibitors

PHARMACOKINETIC

Depends on lipophylity/hydrophylity

Hydrophylic

- Decreased resorption
- Don't cross HEB
- \downarrow $t_{1/2}$
- Renal excretion glomerulal filtration

! Renal insuficiency

Variable half-life ... 2-10 min (esmolol - hydrophylic); 30-50 hod (nebivolol- lipophylic)

Drugs

1) "1. generation"

NON_SELECTIVE

 $\beta_1 + \beta_2$ receptors

CARDIOSELEKTIVE

β₁ selective

sotalol	hydrophilic
timolol	hydrophilic
Antiglaucomatic drug	

ISA +

karteolol

atenolol hydrophilic betaxolol hydrophilic (less) bisoprolol hydrophilic (less) metoprolol lipophylic esmolol hydrophilic $t_{1/2} = 2-10 \text{ min}$

ISA + acebutolol hydrophilic celiprolol hydrophilic

ISA na β₂-rp ⇒**VAZODILATATION**

Combined

nebivolol lipophylic t_{1/2}= 30-50 hours

Metabolised to an active metabolite that potentiates the L/NO pathway vasodilatation

2) Betablockers with combined activity (alpha and beta antagonists)

"2. generation"

CARVEDILOL - lipophylic

- Selective antagonist of α_1 -rp \Rightarrow vazodilatation
- Non-selective antagonist of β-receptors
- Reduction of renin release ↓ RAAS
- Antioxidative effect
- INDICATION: hypertension, chronic cardiac failure

LABETALOL - hydrophylic

- Selective antagonist of α_1 -rp \Rightarrow vazodilatation
- Non-selective antagonist of β-receptors
- \diamond Partial agonist (ISA) of β_2 -rp
- INDICATION: hypertension in pregnancy, i.v. severe hypertension crisis

MAIN INDICATION

1. ANGINA PECTORIS

2. MYOCARDIAL INFARCTION

- 3. Secondary prevention following myocardial infarction
- **4. HYPERTENSION**

. Monotherapy or combination, not longer first chaise

MAIN INDICATION

4. Hearth Failure

sympato-adrenergic hyperactivation decreased, antidysrhytmic effect BISOPROLOL, METOPROLOL (SR), KARVEDILOL, NEBIVOLOL

only in well-compensated patients <u>because of negative</u> <u>inotropic effect!</u>

5. Therapy and prophylaxy of dysrhytmias (II. class) supraventricular dysrhytmias, atrial fibrilation or flutter

OTHER USES:

- Thyrotoxicosis
- Severe infantile haemangioma
- Benign essential tremor
- Anxiety to control symptoms (palpitation, treamor...)
- Glaucoma

e.g. Timolol eye drops

!! Up to 80 % eye drops should be absorbed - systemic effect - bradycardia and bronchospasm!

ADVERSE EFFECTS

Non-selective BB (through β_2 -rcp).

- BRONCONSTRICTION ⇒ relative KI: pacients with AB/CHOPN (...cardioselective nebivolol)
- COLD EXTREMITIES
- ERECTILE DYSFUNCTION
- HYPOGLYCAEMIA
- FATIGUE, INSOMNIA
- CARDIOVASCULAR
 - ✓ hypotension
 - ✓ bradykardia
 - ✓ AV-blocades

CONTRAINDICATION

- Hearth failure (exception well-compenated HF, low doses)
- SA a AV blocades (II. and III. grades)
- Hypotension
- Bradycardia (<50 beats/min)</p>

RELATIVE CONTRAINDICATION

- Astma bronchiale
- COPD
- Diabetes mellitus
- Depression
- Erectile dysfunction

Bradines

MECHANISM OF ACTION

Selective inhibition the pacemaker $\underline{I_f}$ in SA node \Rightarrow slowing the heart rate \Rightarrow allowing more time for blood to flow to the myocardium (only negative chronotropic effect)

DRUG IVABRADIN

INDICATION

- Symptomatic treatment of myocardial ischaemia in patients with AP / chronic heart failure NYHA II-IV
 - in adults unable to tolerate or with a contra-indication to the use of beta-blockers or in combination with beta-blockers in patients inadequately controlled with an optimal betablocker

