MUNI MED

Principles of statistical testing

(1) simple lie(2) treacherous lie(3) Statistics

Benjamin Disraeli

What is statistics?

- the way data are collected, organised, presented, analysed and interpreted
- statistics helps to decide

- descriptive

basic characteristics of the data

- inductive

 characterisation of the sample or population studied, which make possible to interfere characteristics of the whole population (entire "sample")

Why do we need statistics? \rightarrow variability!

diversity in biological populations inter-population or ethnical differences = **BIODIVERZITY**

variability of height

 \bigcirc

in population

180 cm

175 cm

165 cm

157 cm

statistics is about variability !!!

Type of data

- data, measures
 - qualitative = descriptive
 - nominal, binary
 - ordinal, categorical
 - •e.g. grades NYHA I, II, III, IV or TNM system (cancer)
 - quantitative = measurable on scale
 - directly measured values
 - Interval (how much more?)
 - ratios (how many times?)

Raw data – not too clear

DNA	DN_kod	UREA	KREATININ	glom_filt	sRAGE
HER0087	3	7.6	97	1.172	9660.3
HER0037	3	7.6	139	0.574	5843
HER0009	3	6	118	1.502	5753.5
HER0012	3	17.3	274	0.442	5400
HER0118	3	22.6	156	0.463	5386.7
HER0094	3	10.8	234	0.812	5312.4
HER0144	3				5200
KRUS002	3	25.9	309	0.393	4947.8
HER0006	3	7.5	118	1.028	4944.5
HER0007	3	4.7	84	0.764	4917.8
HER0122	3	28.4	295	0.308	4627.1
HER0128	3	7.2	123	1.048	4503.5
KRUS50	3	37.8	525	0.284	4446
HER0035	3	7.1	111	0.739	4404
HER0001	3	14.2	188	0.557	4395.1
HER0057	3	21.8	281	0.703	4389.2
HER0015	3	7.2	75	2.703	4263.3
HER0111	3	13.7	131	0.954	4188.9
KRUS042	3	4.4	104	0.983	4127
HER0047	3	26	333	0.244	4101.9
HER0062	3	22.8	169	0.42	3852.7
HER0002	3	6.9	135	0.999	3815.3
HER0115	3	18.3	152	0.396	3741.2
KRUS045	3	4.4	85	1.7	3693.3
KRUS001	3	20.5	178	0.861	3621.5
M0136	2				3606.9
HER0086	3	24.7	300	0.237	3577.7
HER0132	3	13	154	0.608	3409.8
HER0010	3	6.4	64	1.4	3398
HER0032	3	7.3	73	1.839	3325.5
HER0005	3	3.9	89	2.074	3318.7
KRUS016	2	6	105	2.38	3243.2
HER0071	3	7.3	120	0.769	3234.5
KRUS009	3	10.8	188	0.89	3212.6
M0164	1	7.3	59		3203.9
OLS0008	2				3203.9
HER0061	3	18.2	241	0.277	3080.6
HER0065	3	7.2	116	0.953	3072.3
HER0058	3	16.8	158	0.668	3066
HER0014	3	14.6	187	0.0765	3047.4

Graphical data description

Examples of real data

Data description

position measures (central tendency measures)

- mean (μ)
- median (= 50% quintile)
 - frequency middle
- quartiles
 - upper 25%, median, lower
- mode
 - the most frequent value

variability measures

- variance (σ^2)
- standard deviation (SD, σ)
- standard error of mean (SEM)
- coefficient of variance (CV= σ/μ)
- min-max (= range)
- skewness
- kurtosis
- distribution

Data description

frequency (polygon, histogram)

Distribution

continuous

- normal
- asymmetrical
- exponential
- log-normal
- discrete
 - binomial
 - Poisson

Mean vs. median vs. mode(s)

- numbers:13, 18, 13, 14, 13, 16, 14, 21, 13
 - **x** = (13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13) ÷ 9 = **15**
 - median = (9 + 1) ÷ 2 = 10 ÷ 2 = 5. číslo = 14
 - mode = 13
 - range = 21 13 = 8

Normal (Gaussian) × Student × symmetrical distribution

 $f(z) = \frac{1}{\sqrt{2}} e^{-\frac{1}{2}(z)^2}$

- not every symmetrical distribution has to be normal !!
 - there are several conditions that have to be fulfilled
 - interval density of frequencies
 - distribution function
 - skewness = 0, kurtosis = 0
 - data transformation
 - mathematical operation that makes original data normally distributed
- Student distribution is an approximation of the normal distribution for smaller sets of data
- test of normality
 - Kolmogorov-Smirnov
 - Shapiro-Wilks
 - null hypothesis: distribution tested is not different from the normal one

Normal distribution

Relationship between variables

- Correlation = relationship
 (dependence) between the two variables
 - correlation coefficient = degree of (linear) dependence of the two variables X and Y
 - Pearson (parametric)
 - Spearman (non-parametric)

- Regression = functional relationship between variables (i.e. equation)
 - one- or multidimensional
 - linear vs. logistic
 - interpretation: assessment of the value (or probability) of one parameter (event) when knowing the value of the other one

Examples

Principles of statistical thinking

- inferences about the whole population (sample) based on the results obtained from the limited study sample
 - whole population (sample)
 - e.g. entire living human population
 - we want to know facts applying to this whole population and use them (e.g. in medicine)
 - selection
 - no way we van study every single member of the whole population or sample
 - we have to select "representative" sub-set which will serve to obtain results valid for the whole population
 - random sample
 - every subject has an equal chance to be selected

Statistical hypothesis

our personal research hypothesis

- e.g. "We think that due to the effects of the newly described drug (...) on blood pressure lowering our proposed treatment regimen – tested in this study – will offer better hypertension therapy compared to the current one".
- statistical hypothesis = mathematical formulation of our research hypothesis
 - the question of interest is simplified into two competing claims / hypotheses between which we have a choice
 - null hypothesis (H₀): e.g. there is no difference on average in the effect of an "old" and "new" drug
 - $\mu_1 = \mu_2$ (equality of means)
 - $\sigma_1 = \sigma_2$ (equality of variance)
 - alternative hypothesis (H₁): there is a difference
 - $\mu_1 \neq \mu_2$ (inequality of means)
 - $\sigma_1 \neq \sigma_2$ (inequality of variance)
- the outcome of a hypothesis testing is:
 - "reject H_0 in favour of H_1 "
 - "do not reject H_0 "

Hypothesis testing

©2002 The New Yorker Collection from Cartoonbank.com. All rights reserved.

Statistical errors

- to perform hypothesis testing there is a large number of statistical tests, each of which is suitable for the particular problem
 - selection of proper test (respecting its limitation of use) is crucial!!!
- when deciding about which hypothesis to accept there are 2 types of errors one can make:
 - type 1 error
 - a = probability of incorrect rejection of valid H₀
 - statistical significance P = true value of a
 - type 2 error
 - β = probability of not being able to reject false H₀
 - 1β = power of the test

	True state of the null hypothesis		
Statistical decision made	H ₀ true	H ₀ false	
Reject H ₀	type I error	correct	
Don't reject H ₀	correct	type II error	

Statistical significance

- In normal English, "significant" means important, while in statistics "significant" means probably true (= not due to the chance)
 - however, research findings may be true without being important
 - when statisticians say a result is "highly significant" they mean it is very probably true, they do not (necessarily) mean it is highly important
- Significance levels show you how likely a result is due to chance

Statistical tests for quantitative (continuous) data, 2 samples

test	unpaired	paired
PARAMETRIC (for normally or near normally distributed data)	1. two-sample t-test	1. one-sample t-test dependent
NON-PARAMETRIC (for other than normal distribution)	1. Mann-Whitney U- test (synonym Wilcoxon two-sample)	 1. Wilcoxon one- sample 2. sign test
	comparison of parametrs between 2 independent groups (e.g. cases × controls)	comparison of parametrs in the same group in time sequence (e.g. before × after treatment)

Statistical tests for quantitative (cont.) data, multiple samples

test	unpaired	paired
PARAMETRIC (normal distribution, equal variances)	1. Analysis of variance (ANOVA)	1. modification of ANOVA
NON-PARAMETRIC (other than normal distribution)	 1. Kruskal-Wallis test 2. median test 	1. modification of ANOVA (Friedman sequential ANOVA)
	H_0 : all of <u>n</u> compared samples have equal distribution of variable tested	

Statistical tests for binary and categorical data

binary variable

- 1/0, yes/no, black/white, ...
- categorical variable
 - category (from to) I, II, III
- contingency tables <u>n</u> × <u>n</u> or <u>n</u> × <u>m</u>. resp.
 - Fisher exact testy
 - chi-square

	diseased	healthy
mutation	50	2
no	4	48

Thank you for your attention