

3

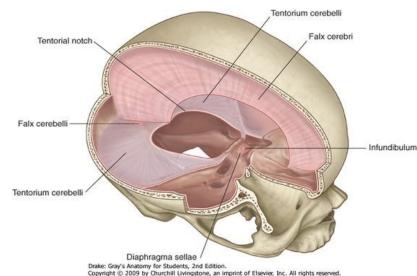
Intracranial compartment, Cellular base of nervous system

Compartmentalization

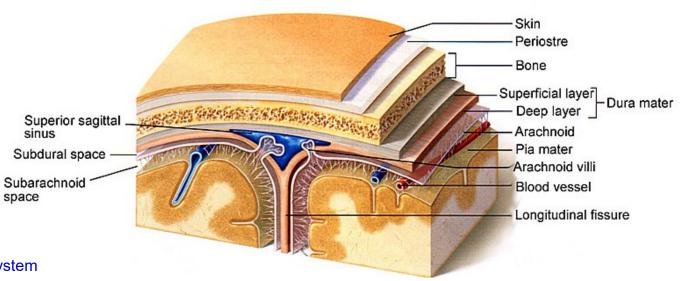
- Cellular specialization leads to compartmentalization on several levels
 - Tissue level
 - Organ level
 - Organ system level
- There are barriers in between compartments
- Properties/content may vary among different compartments

Compartmentalization

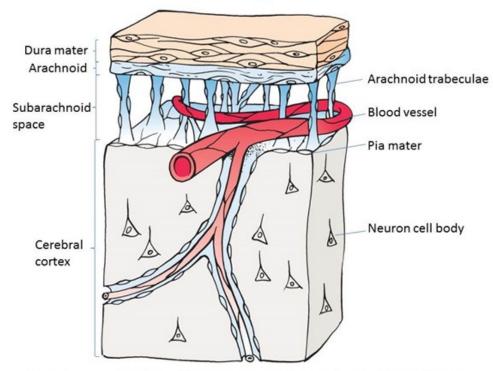
The brain homeostasis is maintained within. Cellular specialization leads to compartmentalization a narrow range thanks to hematoencephalic Tissue level barrier and astrocyte activity Organ level Organ There are Properties/c nong different compartments


Compartmentalization

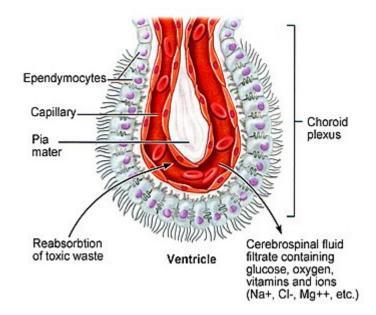
The brain homeostasis is maintained within. Cellular specialization leads to compartmentalization a narrow range thanks to hematoencephalic Tissue level barrier and astrocyte activity This allows neuronal cells to live for the entire Organ level Organ There are among different compartments Properties/o


Intracranial compartment

- ✓ "Very specific region"
- ✓ Brain
- ✓ Cerebrospinal fluid
- ✓ Blood (intravasculary)
- **Barriers**
 - Meningeal
 - Hematoliquor
 - Hematoencephalic

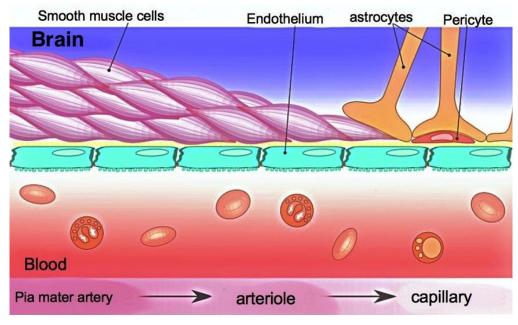


Copyright @ 2009 by Churchill Livingstone, an imprint of Elsevier, Inc. All rights reserved


http://edutoolanatomy.wikispaces.com

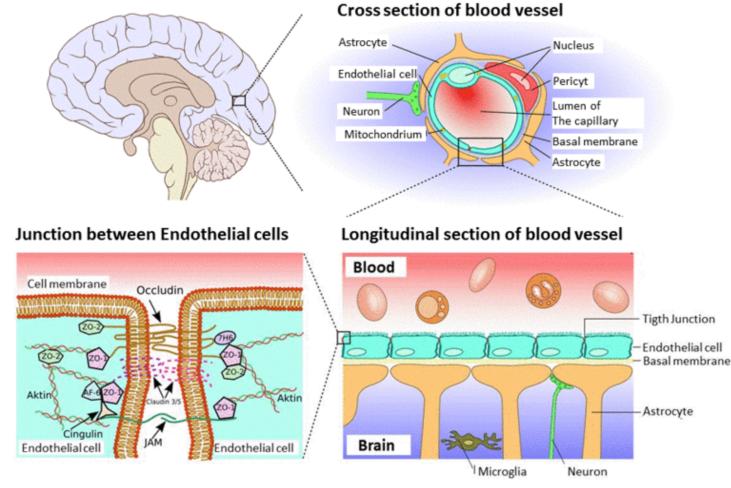
Meningeal and hematoliquor barrier

Adopted from: M.H.Ross and W. Pawlina. Histology: a text and atlas, *Lippincott Williams & Wilkins*, 2011 https://sisu.ut.ee/histology/meninges



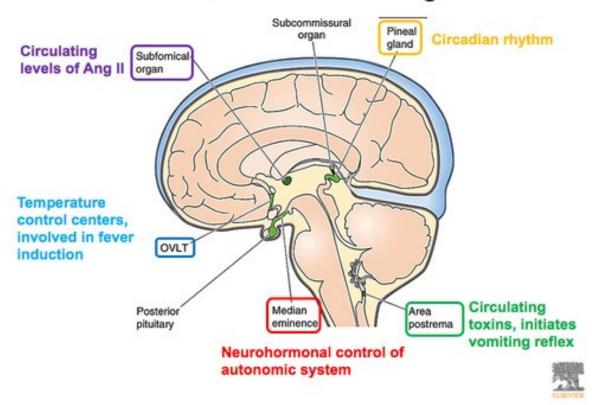
https://sisu.ut.ee/histology/meninges

Hematoencephalic barrier


- Highly organised structure
 - Endothelial cells (low permeability thanks to zonlua occludens)
 - Basal membrane
 - Astrocytes
 - Pericytes

https://upload.wikimedia.org/wikipedia/commons/1/12/Blood_vessels_brain_english.jpg

Hematoencephalic barrier

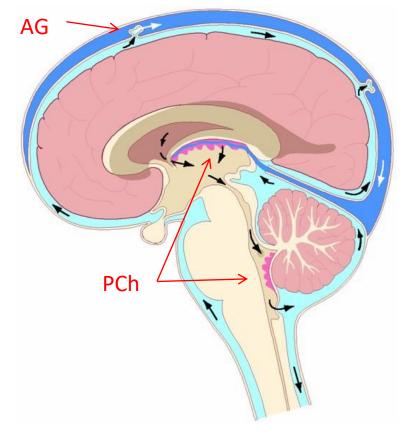


Circumventricular organs

- Rich vascularisation
- Modified hematoencephalic barrier
- Sensors
- Secretion

The circumventricular organs

http://www.neuros.org/index.php?option=com_photos&view=photos&oid=hafizbilal

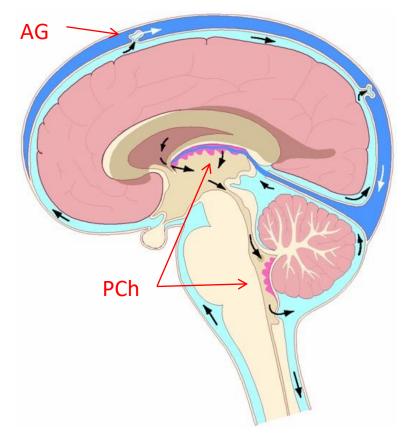

Cerebrospinal fluid

Content

- ✓ High levels of Mg⁺ and Na⁺
- ✓ Low levels of K⁺ and Ca²⁺
- ✓ Almost no cells (max 5/ml)

Function

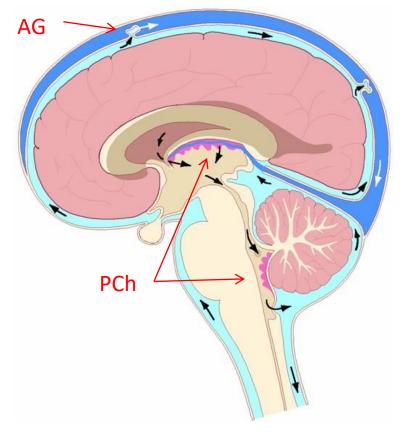
- ✓ Protection
- ✓ Microenvironment of neurons and glia
 - Metabolic function
 - Immunologic function
 - Transport function and so on



http://www.control.tfe.umu.se

Cerebrospinal fluid

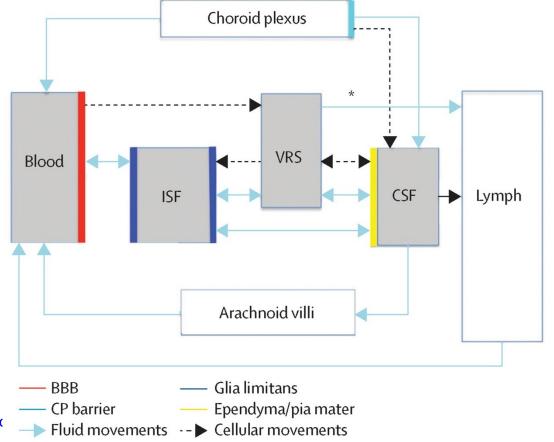
- Clear fluidproduced by active secretion
- Liquor space
 - ➤ lined by ependymal cells
 - > 150-250 ml

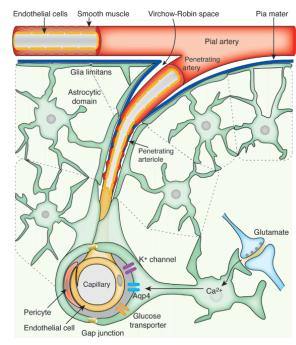


http://www.control.tfe.umu.se

Cerebrospinal fluid

- Clear fluidproduced by active secretion
- Liquor space
 - > lined by ependymal cells
 - > 150-250 ml
- Production
 - ✓ Plexus choroideus (PCh) -70%
 - ✓ Cell metabolism
 - ✓ Cappilary filtration
 - > 450-750 ml/day
- Resorbtion
 - ✓ Archnoid granulations (AG)

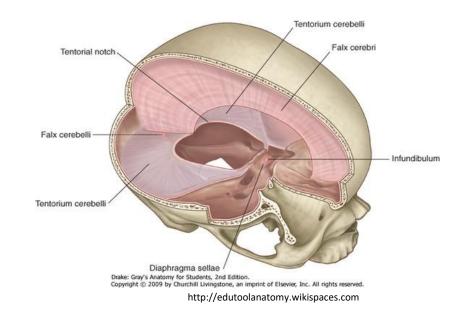

http://www.control.tfe.umu.se

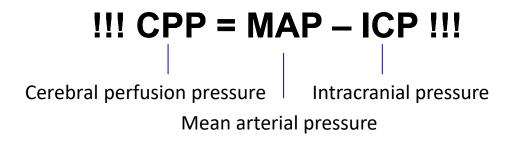


New insight into the production and resorbtion of CSF

Ducros A, Biousse V. Headache arising from idiopathic changes in CSF pressure. *The Lancet Neurology*. 2015;14:655–668.

- CSF cerebrospinal fluid
- ISF interstitial fluid
- VRS Virchow Robin space (space between the pia mater and an artery or a vein, but not capillaries)




http://visnu528.blogspot.cz/2014/09/glymphatics-and-virchow-robin-space.html

Intracranial compartment

- Brain
- Cerebrospinal fluid
- Blood (intravasculary)
- Intracranial pressure (ICP)
 - Critical determinant of cerebral perfusion
- Cerebral perfusion pressure (CPP)
 pressure gradient driving blood
 flow intracranialy

Cellular base of nervous system

- Neuronal cells
 - Reception, integration and propagation of information
 - Unique, irreplaceable
- Neuroglial cells
 - Support for neuronal cells
 - Easily replacable

Cellular base of nervous system

- Neuronal cells
 - Reception, integration and propagation of information
 - Unique, irreplaceable
- Neuroglial cells
 - Support for neuronal cells
 - Easily replacable
- The total amount of neuronal cells 100 billions (10¹¹)
- Neruon/glia ratio
 - 1/10 50 (Principles of Neural Science, 4th ed., 2012)
 - -1/2-10 (Principles of Neural Science, 5th ed., 2012)
 - 1/1 (Nolte's Human Brain, 7th ed., 2015)

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune funtion

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune funtion
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining (liquro-encephalic barrier)

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune funtion
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining(liquro-encephalic barrier)

Peripheral nervous system

- Satelite cells
 - Support functions in PNS

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune funtion
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining(liquro-encephalic barrier)

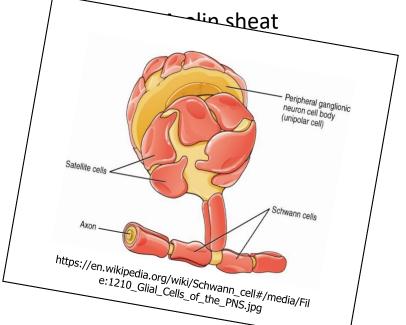
Peripheral nervous system

- Satelite cells
 - Support functions in PNS

- Schwan cells
 - Myelin sheat

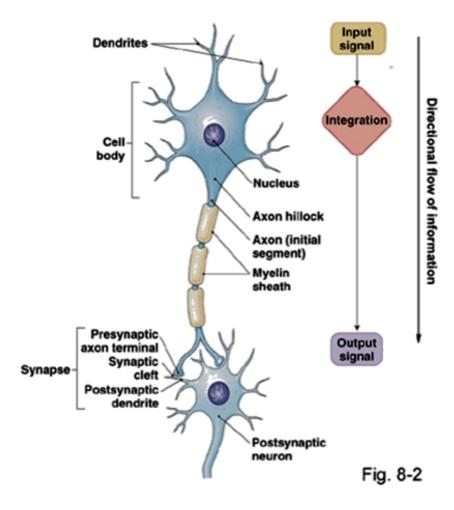
https://en.wikipedia.org/wiki/Oligodendrocyte#/media/


En.winipedia.org/wini/origoueriarocyte_ File:Oligodendrocyte_illustration.png

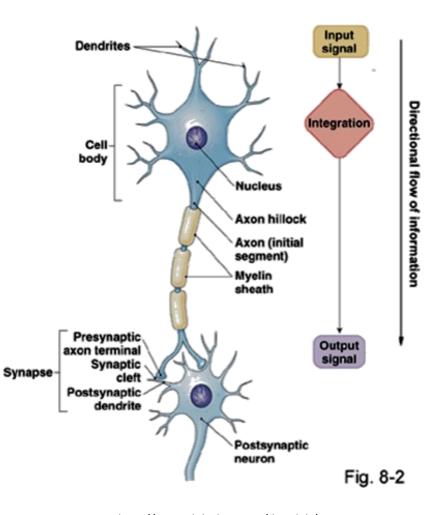

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune funtil
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor &
 - Ventricular lining (liquro-encephalid ______

Peripheral nervous system


- Satelite cells
 - Support functions in PNS

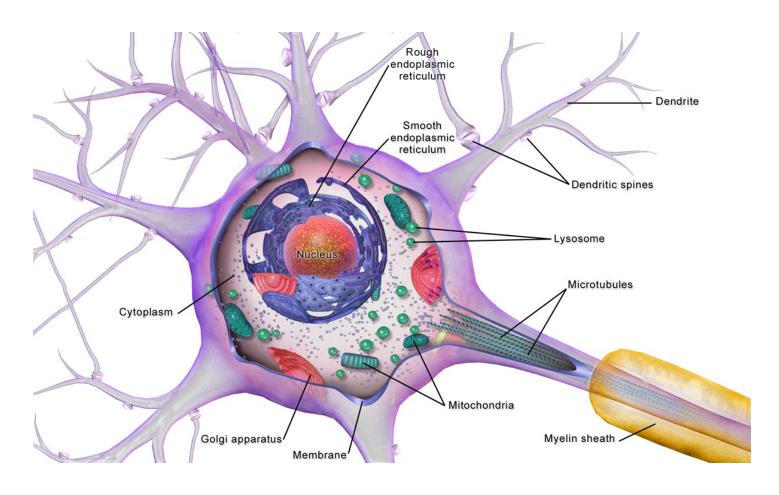
Neuron



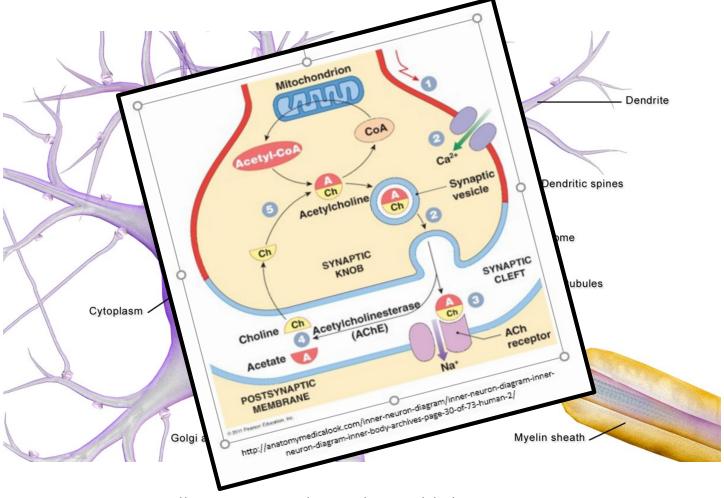
The inside of the cell

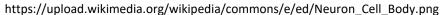
- **√** ..
- ✓ Synthesis
- ✓ Transport
- **√** ..

Neuron



Information processing and transmission

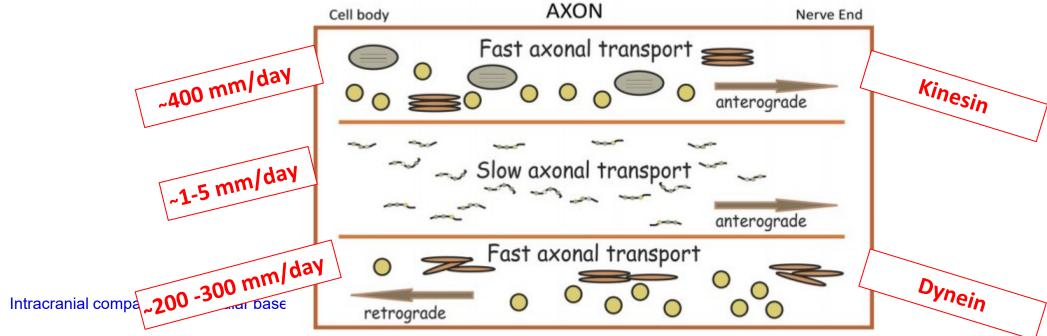

The membrane


- ✓ Signal reception
- ✓ Signal integration
- ✓ AP generatin
- ✓ AP propagation
- ✓ Signal transmission

Fast axonal transport

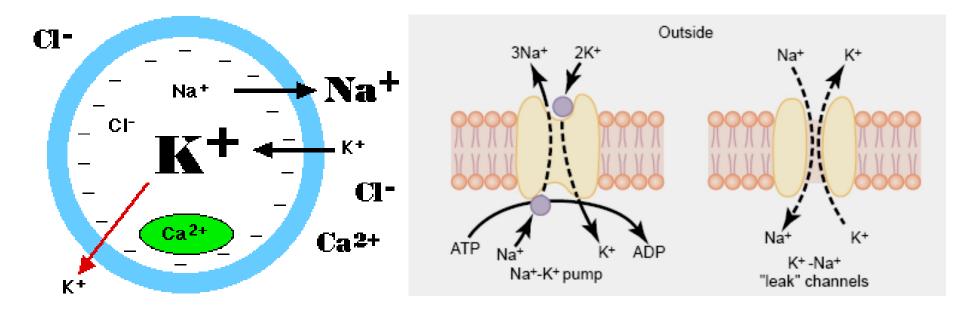
- bidirectional
- ATP dependant
- associated with microtubules: dynein and kinesin

Fast axonal transport


Golgi derived vesicles lysosmes, mitochondria structural elements of endoplasmic reticulum

Slow axonal transport

- unidirectional,
- ATP independant
- conducted by sliding, polimerizing and protein interacting


Slow axonal transport

microfilaments, microtubules neurofilaments cytosolic protein complexes

Membrane potential

 Due to differences in the concentrations of ions on opposite sides of a cellular membrane

http://www.slideshare.net/drpsdeb/presentations

Resting membrane potential of a neuron

Resting potential around -70 mV

- Highly instable state of membrane
- Why? Speed!
- High energetical demands
 - ✓ Oxygen 20% of total body consumption
 - ✓ Glucose 25% of total body consumption

Action potential

Quick voltage change on the membrane

Spreads along the axon Input signal All or nothing principle Directional flow of information Integration Cellbody Nucleus Treshold potential around -55 mV Axon hillock Axon (initial segment) Myelin sheath Presynaptic. Output signal axon terminal Synaptic Synapse dendrite Postsynaptic neuron

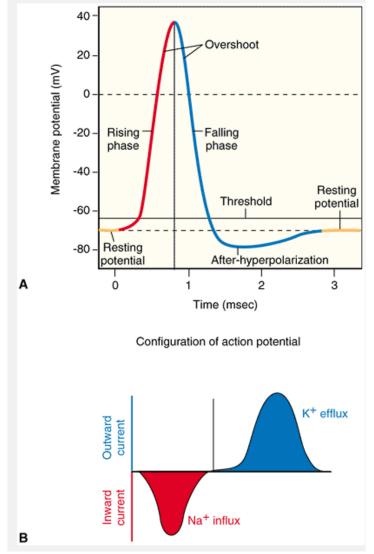
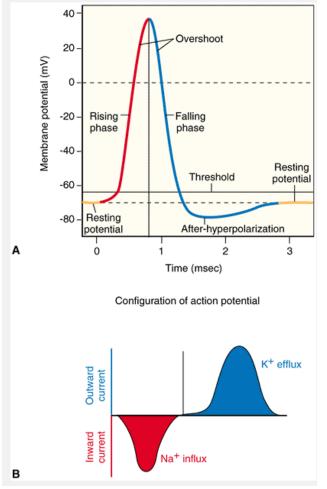
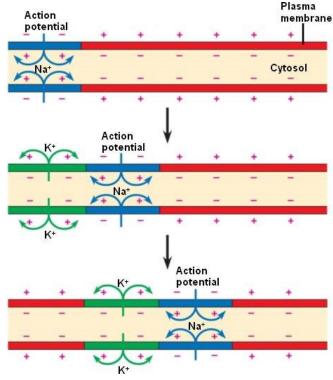
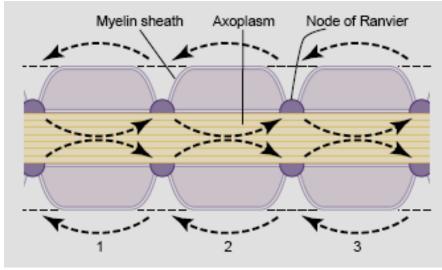
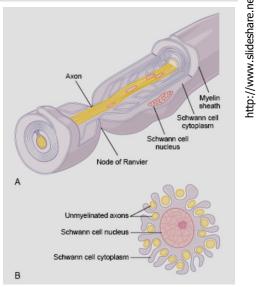




Fig. 8-2

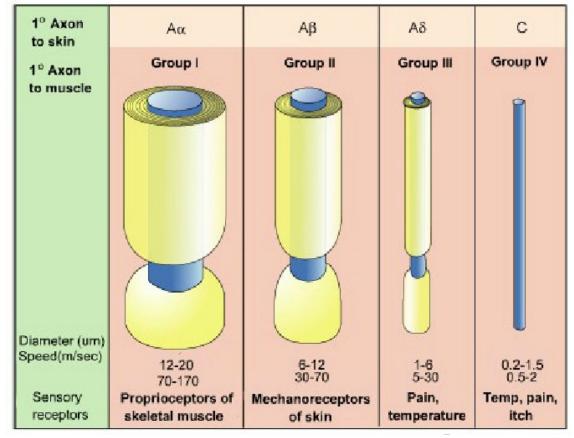
Action potential spreading




- Local currents
- Anterograde

Saltatory conduction

- Myelin sheat
- Nodes of ranvier
- Economy
- Speed of conduction
- Speed of conduction also dependent of nerve fibre diameter
 - the electrical resistance is inversly proportional to area of crosssection



Classification of nerve fibers

- In humans mostly myelinated
- All fibers are myelinated in CNS
- Non-myelinated are evolutionary old ones

http://neuroscience.uth.tmc.edu/s2/chapter04.html

Neuronal classification

Structure	Functional implication	Example	Basis for classification	
 Unipolar	Small area for receiving synaptic input: highly specialized function	Unipolar neuron (dorsal root ganglion cell)	3. Number of processes One process exits the cell body	
 Bipolar	Small area for receiving synaptic input: highly specialized function	Bipolar neuron (retinal bipolar cell)	Two processes exit the cell body	
 Multipolar	Large area for receiving synaptic input; determines the pattern of incoming axons that can interact with the cell	Multipolar neuron (spinal motor neuron)	Many processes exit the cell body	S. Intracranial co
Bipolar	synaptic input: highly specialized function Small area for receiving synaptic input: highly specialized function Large area for receiving synaptic input; determines the pattern of incoming axons	(dorsal root ganglion cell) Bipolar neuron (retinal bipolar cell) Multipolar neuron (spinal motor neuron)	Two processes exit the cell body Many processes exit the	6 Intracranial co

Neuronal classification

Basis for classification	Example	Functional implication	Structure
2. Dendritic pattern Pyramid-shaped spread of dendrites	Pyramidal cell (hippocampal pyramidal neuron)	Large area for receiving synaptic input; determines the pattern of incoming axons that can interact with the cell (i.e., pyramid-shaped)	Pyramidal cell CilleEgri/presentations
Radial-shaped spread of dendrites	Stellate cell (cortical stellate cell)	Large area for receiving synaptic input; determines pattern of incoming axons that can interact with the cell (i.e., star-shaped)	Stellate cell and share.net/Csilla Egri/presentations

Neuronal classification

Basis for classification	Example	Functional implication	Structure	
Axonal projection Goes to a distant brain area	Projection neuron or Principal neuron or Golgi type I cell (cortical motor neuron)	Affects different brain areas	Dorsal root ganglion cell	http://www.slideshare.net/CsillaEgri/presentations
Stays in a local brain area	Intrinsic neuron or Interneuron or Golgi type II cell (cortical inhibitory neuron)	Affects only nearby neurons	Retinal bipolar cell	http://www.sli

MUNI MED

68. Cellular base of nervous system

- ✓ Neuroglial cells
 - Classification and functional overview
- ✓ Neuronal cells
 - Characterization, classification, anatomy
 - Functions of neurons
 - Background activity (cytoplasm)
 - Synhtesis (soma)
 - Transport (categorization, characterization)
 - Information processing and transmission (membrane)
 - Main points of question No. 70

MUNI MED

69. Intracranial compartment, intracranial pressure

- ✓ Content of intracranial compartment (brain, blood, CSF)
- ✓ Barriers among compartments (meningeal, hematoencephalic, hematoliquor)
 - HEB description
 - Circumventricular organs
- ✓ CSF
 - Function
 - Production, circulation, absorption
- ✓ Intracranial pressure
 - Definition, equation, implications

MUNI MED

70. Membrane voltage, action potential – generation and propagation through nerve fibers

- ✓ Membrane potentials
 - General characteristics and ionic mechanisms description
- ✓ Resting potential in neuron (characteristics)
- ✓ Action potential
 - Characteristics
 - Ionic mechanisms
 - Signal conduction
 - Role of myelin, saltatory conduction
- ✓ Classification of nerve fibres
- 41 Intracranial compartment, Cellular base of nervous system

#