

PHYSIOLOGY OF THE CELL

Seminar I.

1 Marie Nováková, 2020-2021

PLASMATIC MEMBRANE

2 Marie Nováková, 2020-2021

MECHANICAL COUPLING

desmosomes (macula adherens; cell adhesion and mechanical stability of tissues) –

epidermis, liver, myocardium

ELECTRICAL COUPLING

• gap junction (nexus), consists of two connexons, forms s.-c. electrical synapse (neuron)

CONNEXON 6 subunits, connexin 1-2 nm central channel

HUMORAL COUPLING (REGULATION)

autocrine

paracrine (neurocrine)

juxtacrine

endocrine (neuroendocrine)

NERVOUS COUPLING (REGULATION)

Integration of humoral and nervous regulations in organism

Receptor, ligand, second messenger.

Neurotransmitters vs. tissue "hormones" vs. "classic" hormones

- 1. Number of receptors
- 2. Number of ligands
- 3. Subtypes of receptors
- 4. Competition on receptors
- 5. Endogenous ligands, exogenous ligands
- 6. Orphan receptors
- 7. Placement of receptors
- 8. Convergence and divergence of the effects
- 9. Transmission of information intracellularly

 $M \vdash D$

SECOND MESSENGER SYSTEMS

cAMP, cGMP, IP₃, DAG, Ca²⁺-calmodulin

cAMP

H-R complex binds to G-protein – stimulatory or inhibitory (α , β and γ subunits) Mg²⁺, HR $\beta - \gamma$ Activation or inhibition of adenylcyclase Activation of proteinkinases \longrightarrow protein phosphorylation

Direct regulation of ionic channels and exchangers (K⁺, Ca²⁺)

G_s: glucagon, oxytocin, histamine, dopamine, ADH, FSH, TSH, AD ($\beta_{1,2}$) G_i: Ach, opioids, AGII, AD (α_{2}), dopamine

IP₃/DAG

H-R complex binds to G-protein – G_q Activation of phospholipase C \longrightarrow PIP₂ \longrightarrow IP₃ and DAG

DAG: activates proteinkinase C Phosphorylation of Na⁺/H⁺ pump $\downarrow pH_i$ Effect of prostaglandins and prostacyclin

IP₃: translocation to endoplasmic reticulum
IP₃ receptor (subtypes), opening of calcium channels
Increase in cytoplasmic availability of calcium - "third messenger"

 G_{q} : AD (α_{1}), Ach, thyreoliberin, ADH, thromboxane

IONIC CHANNELS

Molecular biology of the cell. B. Alberts et al., Garland Science 2002

MUNI

MED

Membránová elektrofyziologie myokardu, P. Pučelík, Avicenum, 1990

CHANNELS WITHOUT GATES

GATED CHANNELS

1. VOLTAGE GATED CHANNELS

- One-gate channels (activation vs. deactivation)
- Two-gates channels (activation vs. inactivation vs. recovery from inactivation)
- 2. LIGAND GATED CHANNELS (nicotinic cholinergic receptor; ATP-sensitive K⁺ channel)
- G-PROTEIN GATED CHANNELS (Ach-sensitive K⁺ channel of SA node muscarinic receptor)
- **4. MECHANICALLY** GATED CHANNELS "stretch receptors" (K⁺, Ca²⁺)

RESTING MEMBRANE POTENTIAL

difference between electrical potential of intra- and extracellular solution (at rest).
Different composition of IC and EC environment is kept by membrane transport mechanisms.

DIFUSSION CURRENTS: ionic currents across the membrane (in both directions) through open ionic channels (specific channels) = simple diffusion according to concentration gradient

 $M \vdash 1$

ELECTROCHEMICAL GRADIENT

- semipermeable membrane
- different conductivity for ions
- the force given by <u>concentration</u> gradient equals to the force given by <u>electrical</u> gradient

DONNAN EQUILIBRIUM (D. PHENOMENON)

Concentration of anions multiplied by concentration of cations on one side of membrane equals to concentration of anions multiplied by concentration of cations on the other side of membrane.

 $N/I \vdash I$

12 Marie Nováková, 2020-2021

I – current, E – voltage, g – specific voltage and time-dependent conductance

GOLDMAN (HODGKIN-KATZ) EQUATION

$$MP = g_{K}$$
 . E_{K} + g_{Na} . E_{Na} + g_{CI} . E_{CI} / g_{K} + g_{Na} + g_{CI}

Respects the fact that even at rest there are membrane currents present –

background current (inward, outward).

PHYSIOLOGICAL SIGNIFICANCE OF RESTING MEMBRANE POTENTIAL

Possibility to code and transmit information in living systems (excitable tissues) – in the form of **action potential**

Triggering of muscle contraction by action potential!

ACTION POTENTIAL

LOCAL RESPONSE

Changes of conductivity of the membrane for particular ions (opening the ion-specific channels)

Depolarization, transpolarization, repolarization. **REFRACTERITY.**

Inward currents x outward currents.

15 Marie Nováková, 2020-2021

MUSCLE CONTRACTION AND RELAXATION

CONTRACTILE PROTEINS

ACTIN – globular, 400 molecules = chain = F-actin; 2 chains in spiral = filament

MYOSIN – "thick" filaments, head with ATP-ase activity, filament = 150 – 360 molecules of myosin

 $M \vdash 1$

(head + neck = heavy meromyosin, light meromyosin)

MODULATORY PROTEINS

TROPONIN – C, I, T

TROPOMYOSIN

PHYSIOLOGICAL ROLE OF CALCIUM

PRINCIPLE OF MUSCLE RELAXATION

Removal of calcium from cytoplasm

