Acid – base balance

Terms

- ICF = intacellular fluid
- ECF = extracellular fluid
- IVF = intravascular fluid
- EVF = extravascular fluid

Water

Body water

50-80 % of body weight (depending on age)

- 80 % newborns
- 60 % slim adults
- 55 % obese adults
- 50 % seniors

Body water distribution

Fluid

- ICF 40 % of body weight
- ECF 20 % of body weight
 - Interstitial 15 %
 - Intravascular 5 %

Body water distribution

Body – water distribution

- Transcellular fluid
- Physiologically
 - GIT (2-3 litres after food intake)
 - CSF (cerebrospinal fluid)
- Patologically
 - Abdominal cavity (ascites)
 - Thoracic cavity (hydrothorax)
 - Intestine (ileus)
 - Bruises

Water balance

Intake (ml)		Excretion (ml)	
Drinking	1500	Urine	1500
Food	700	Perspiration	400
Nutrition oxid.	300	Breathing	400
		Sweating	100
		Faeces	100
Total	2500		2500

Can be measured

Can be estimated

Water balance

Distribution of substances in water

1. Substances, which pass freely through cell membranes

2. Substances, which make concentration gradient (ICF x ECF)

3. Substances, which make concentration gradient (IVF x EVF)

1. Substances, which pass freely through cell membranes

- Endogenous substances: urea
- Exogenous substances: ethanol

2. Substances, which make concentration gradient (ICF x ECF)

Different concentration of these substances in ICF and ECF.

Mainly ions (Na, K, Cl, Ca, Mg, P)

Mechanisms

- Semipermeable membrane (glucose)
- Iont pumps (active transport Na/K ATPases, energy required)

Main ions

	ECF (blood) mmol/l	ICF (cells) mmol/l
Na	140	10
CI	102	8
K	4,0	155
Са	2,2	0,001
Mg	1,0	15
Р	1,0	65

3. Substances, which make concentration gradient (IVF x EVF)

Different concentrations of substances in IVF and EVF.

- Proteins (albumin)
- Proteins are responsible for keeping the water in vessels
- Hypoproteinemia leads to edema

Osmolality

 Osmolality = total amount of osmotic active particles dissolved in one kg of water – mmol/kg.

How to count osmolality

Plasma-osmolality (mmol . kg –1) 2[Na+] + [glucose] + [urea]

 $2 * 140 + 5 + 5 = 290 \text{ mmol} \cdot \text{kg} - 1$

Osmolal gap

 Difference between measured and counted osmolality

OsmGap = POsm_{measured} - **POsm**_{calculated}

- Discovers a presence of alcohol or etylenglycol
- If OsmGap > 10 mmol/kg , then presence of these substances is very probable
- 1 g of ethanol in 1 litre of plasma (1 per mille of alcohol) rises osmolality by 23 mmol/kg.

Regulation of osmolality

• Osmoreceptors

 Antidiuretic hormone (ADH) – regulates resorption of pure water in kidneys

Hyperosmolality

Deficiency of water, many solutes

- Dehydratation
- fever, burns, inability of drinking

or

↑ concentration of glucose, urea, alcohol in blood (osmotic active) but without dehydratation

Reaction: \uparrow ADH \rightarrow resorption of water in kidneys, feeling thirsty

Hypoosmolality

Too much water and not enough soluts

- "overhydratation"
- too much infusions (glucose)
- Brain injury, defective secretion of ADH

Reaction: \downarrow ADH, polyuria

Osmolality of urine

50 - 1400 mmol/kg H₂O
– old people: max. 800

lons in blood and cells

	ECF (blood) mmol/l	Cells mmol/l
Na	140	10
CI	102	8
K	4,0	155
Ca	2,2	0,001
Mg	1,0	15
Р	1,0	65

Main ions in blood

mmol/l

Na (sodium): 135 - 145 mmol/l

Distribution

- ECF 50 %
- Bone tissue 40 %
- ICF 10 %

Na ions are followed by water

Intake: NaCl (salt) 8-11 g/day (1 g/day is enough) Excretion:

- urine: 120 240 mmol/l
- sweat: 10 20 mmol, faeces 10 mmol

Importance of Na: state of hydrataion, osmolality

Hypernatremia + loosing water

- Fever sweating, hyperventilation
- Inability of drinking

- Results:
- \uparrow osmolality \rightarrow transfer of water from ICF to ECF
- ↑ ADH ↑ water resorption in kidneys

Symptoms: 1 protein, hemoglobin, dehydratation, hyperosmolality

Hypernatremia + increased intake of Na

Intenstive infusion therapy

Results:

hyperhydration

Symptoms: hyperhydration, polyuria

Hyponatremia

Too much of water

- Hyperhydration with glucose infusions
- Restriction of Na intake

Symptoms:

- edema, pulmonaly edema
- Encephalopathy
- \downarrow osmolality

Main ions in blood

mmol/l

K (potassium): 3,7 - 5,1 mmol/l

Reserves 3 500 mmol, main iont of ICF

Distribution

- ICF 98 %
- ECF 2 %

Concentration

- plasma 3.7 5.1 mmol/l
- cells 110 160 mmol/l (ery 95 mmol/l)

Potassium - K

Excretion

- Urine: 45 90 mmol/24 hrs
- Faeces: 5-10 mmol/24 hrs

Sources – plant food

Importance: neuromuscular excitability, related to pH in organism

Dependence of K on pH

HyperK

- Decreased excretion by kidneys (oliguria, anuria)
- Transfer from cells to blood (acidosis, hemolysis, katabolism)

Symptoms

- arrhythmia
- muscle weakness

Dangerous values:

• > 6,5 mmol/l

- > 9-10 mmol/l \rightarrow ventricle fibrilation
- Requires HD (dialysis)

HyperK - therapy

If kidney are not affected by disease

• diuretics (furosemide i.v)

In case of renal insufficiency

- Infusion: glucose + insulin
- Ion exchanger (Resonium)
- dialysis

НуроК

- Increased excretion: diuretics, diarrhoea
- Low intake
- Transfer into cells (alkalosis, anabolism)

Symptoms:

- arrhythmia
- muscle weaknes, ileus

K - other

Blood exams K (red blood cells!)

- hemolysis (potassium washed up from cells to plasma)
- samples have to be stored in fridge

Chlorides- Cl

Distribution

• ICF

- Main iont of ECF
 - 97 105 mmol/l 3 - 10 mmol/l

Importance:

- osmolality
- Acid-base balance (change in concentration of $Cl^ \rightarrow$ change in concentration of HCO_3^-)
- gastric juices HCl

Balance

- Excretion by urine 120 240 mmol/24 hrs
- Sweat 10 20 mmol, stolice 10 mmol/24 hod

Main ions in blood

HyperCl

- Decreased excretion via kidneys
- Increased intake + renal insufficiency
- Increased intake of NaCl

Symptoms:

 $^Cl^-$ → \downarrow HCO₃⁻ (buffer systém restricted – inability of catching H⁺) → \downarrow pH (acidosis)

HypoCl

Excretions

- Gastric juices (vomiting)
- Kidneys (diuretics, polyuria)
- Sweating

Symptoms:

↓ Cl⁻ → ↑ HCO₃⁻ (abundance of buffers), ↓ H⁺ → ↑ pH (alkalosis)

Acid - base balance

pH: 7.35-7.45

- Activity of hydrogen ions
- Increased [H⁺] = decrease pH.
- Low pH: blood is more acid
- High pH: blood is less acid

Acids and bases

Acids: release H⁺ iont

Bases: accept H⁺ iont

$$(H^+ + OH^- \implies H_2O$$
$$(H^+ + C_2H_5OO^- \implies C_2H_5COOH$$

- Acids: lactate, carbonic acid
- Bases: bicarbonate

Deviations in pH

Normal pH: 7,35 – 7,45.

In case of deviation:

- Affects contractility of myocard, nerve conductance
- enzymatic functions

pH < 6,80 or > 7,80 is dangerous situation!

Keeping pH in normal ranges

- 3 systems:
- Extracelular buffers
- Lungs
- Kidneys

- Buffering by extracellular and intracellular buffers - 1st line emergency defence (rapid)
- Lungs: Alveolar ventilation, which controls PaCO₂ (and increases efficiency of H₂CO₃⁻ /NaHCO₃⁻ buffer system)
- Renal H⁺ excretion, which controls plasma [HCO₃⁻] (and conserves Na⁺ and excretes anion of the offending acid) (slow)

Acid – base balance Normal pH: 7.35-7.45

Acidosis

- pH < 7.35
- Serious: pH < 6.80

Alkalosis:

- pH > 7.45
- Serious: pH > 7.70

Keeping pH in normal ranges

Buffer bases

- React with acids and bases
- bind extra H⁺ ions (temporary solution)

Definitive solution = excretion of H⁺ ions by lungs or kidneys.

Keeping pH in normal ranges Main buffer systems:

Blood

- Natrium bicarbonate: NaHCO₃
- Hemoglobin
- Proteins

ICF

Phosphates

Bicarbonate buffer: NaHCO₃

$H^+ + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O_3$

Lungs

$HCO_3^- + H^+ \neq H_2CO_3 \neq H_2O + CO_2$

Excretion of CO₂ by lungs drives reaction to right.

assess.

Kidneys

HCO₃⁻ resorption

Regeneration of bicarbonates

Excretion of H+

Dissolving CO₂ (carbon dioxide) in blood

$CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$

800 : 1 : 0.03

lungs (intensity of breathing - CO₂)
kidneys (excretion of H⁺, synthesis HCO₃⁻)

Bicarbonate (HCO₃⁻)

• Deficiency \rightarrow acidosis

• Abundance \rightarrow alkalosis

Compensation of acid-base dysbalances

By:

- Lungs
- Kidneys

Pulmonary compensation

- Changing concentration of CO₂ leads to
- Changes in contrentration of H₂CO₃

Pulmonary compensation

Metabolic acidosis: hyperventilation

- breathing out CO_2 , $\downarrow H_2CO_3$
- very effective mechanism

Pulmonary compensation Matabolic alkalosis: hypoventilation

- $\uparrow pCO_2$, $\uparrow H_2CO_3$ but $\downarrow pO_2$, hypoxia
- not effective enough

 $HCO_3^- + H^+$ H_2CO_3 $H_2O + CO_2$

Kidney compensation

Kidney compensation

Acidosis

- \uparrow synthesis of HCO₃⁻
- \uparrow synthesis and excretion of NH_4^+ , $H_2PO_4^-$

Alkalosis

- \downarrow resorption HCO₃⁻
- \downarrow synthesis of NH_4^+ (\downarrow excretion H^+), \uparrow synthesis of HPO_4^{2-}

Pulmonaly AB dysbalances

Metabolic AB dysbalances

Concentration of acids and bases is changed

Too many acids and/or Low bicarbonate

Acidosis

Low amount of acids and/or Increased bicarbonates **Alkalosis**

Metabolic acidosis

Accumulation of acids:

- ketoacids diabetes
- intoxications (methanol, ethylenglycol etc.)

Loosing bicarbonates (diarrhoea) Hyperchloridemia

Lactate acidosis

- Accumulation of lactate
- \downarrow utilisation of lactate (liver failure, metformin)

Metabolic alkalosis

Loosing chlorides

- Vomiting HCl (hydrochloric acid)
- diuretics

Increase of bicarbonates

• When treating acidosis

Respiratory acidosis

Accumulation of carbonic acid, when pulmonary insufficiency (accumulation of CO₂)

 Pulmonaly diseases (COPD), intoxications leading to decreased respiratory centre function

Respiratory alkalosis

Low carbonic acid when excessive breathing (decrease of CO_2)

- Hyperventilation syndrom (anxiety, stress)
- encephalitis, meningitis

Parameters

- pH Measuring of [H+]
- pCO₂ respiratory part of AB balance
- HCO₃⁻ metabolic part of AB balance

AG – anion gap

- Difference between main plasmatic cations and anions (Na⁺ + K⁺) – (Cl⁻ + HCO₃⁻)
- We can evaluate participation of lactate, ketoacids etc. on AB dysbalance.
Compensation of AB dysbalance

Respiratory deviations are compensated by kidneys and metabolic deviations are compensated by lungs.

When to take Astrup

Metabolic disorders

- Ketoacidosis, diabetes mellitus
- Intoxications
- Mineral dysbalances

Respiratory disorders

- Respiratory insufficiency
- COPD

Taking blood sample

- MD is responsible
- Taken from artery, without acess of the air

Save the 1st patient

- Patient is vomiting several days. What are the expected changes in AB balance?
- Answer: hypochloremic metabolic alkalosis (loosing hydrochloric acid)
- Because patient is really sick, he is starving. What are the expected changes in AB balance?
- Answer: metabolic ketoacidosis.

Type of AB dysbalance

Combination of metabolic acidosis and metabolic alkalosis

Save the 1st patient

- What about pH? Will it be deviated or in normal ranges?
- Which biochemical parameters should be examinated?

Save the 1st patient

Obr. 13.5. Vývoj kombinované poruchy ABR při zvracení a současném hladovění podle aniontů v séru (čísla uvádějí koncentraci iontů v mmol/l, RA = reziduální anionty - jejich zvýšení je způsobeno hromaděním ketolátek)

Save the 1st patient - how to treat him?

Stop vomiting

Antiemetic medication (metoclopramid/itoprium chlorid/ondansetron)

Rehydration

 Infusion with NaCl (substitution of Cl), glucose infusion (nutrition)

Nutrition

• Parenteral / later enteral

Save 2nd patient

- Patient with DM is not compliant and he decided not to take his insulin regularly. What are the expected changes in AB balance?
- Answer: hyperglycemia \rightarrow ketoacidosis

Hyperglycemia → osmotic diuresis → polyuria and dehydration (hypovolemia) → tissue hypoxia → lactate acidosis

Type of AB dysbalance

 Combination of two metabolic acidoses (ketoacidosis from DM+ lactate acidosis from tissue hypoxia)

Save the 2nd patient - how to treat him?

- Treat the DM properly
- Insulin + rehydration, regular controls of potassium (beware of hypokalemia during treatment of hyperglycemia).
- Decrease glycemia slowly (brain edema).

Save 3rd patient

- Patient with cardiopulmonary arrest. What are the expected changes in AB balance?
- Answer: respiratory acidosis (CO₂ is rising up in organism)

• Tissue hypoxia \rightarrow lactate acidosis

Type of AB dysbalance

• Combination of respiratory acidosis and metabolic acidosis.

Save the 3rd patient - how to treat him?

- CPR
- Artificial ventilation

