INHERITED METABOLIC DISEASES

MUDr. Hana Vinohradská

Department of Clinical Biochemistry, University Hospital Brno

Inherited Metabolic Diseases (IMDs)

- The former term: Inborn errors of metabolism
- Definition: heterogeneous group of diseases, genetically conditioned change of protein
- In the early 20th century the conception of IMD was formulated by British physician sir Archibald Garrod
- He is known for his work that prefigured the "one gene-one enzyme" hypothesis
- He also described the first four IMD: alkaptonuria, albinismus, pentosuria, cystinuria

PATHOGENESIS

- IMDs are diseases based on molecular level
- IMDs are caused by a change in the genetic information
- Mutation in DNA → fault transcription to mRNA → fault syntesis protein → protein with a modified structure
- Mutation → defective transcription → defective translation
- 1 gene encodes synthesis of 1 molecule of protein

FUNCTION OF THE PROTEIN IN THE INTERMEDIARY METABOLISM

• Enzyme

- Transport protein
- Structural protein
- Regulatory protein

FORMS OF GENETIC TRANSMISSION

NUCLEAR DNA

- Autosomal recessive inheritance
- Autosomal dominant inheritance
- Gonosomal dominant inheritance
- Gonosomal recessive inheritance

MITOCHONDRIAL (extranuclear) DNA

• Maternal type inheritance

INHERITANCE <u>AR</u>

- Most IMDs are inherited **autosomal recessive**
- Disease only affects individuals with two defective copies of the gene – one from each parent (recessive homozygotes)
- Heterozygot is healthy individual, he is only "carrier" of the defect gene

INCIDENCE OF IMD

- Individual incidence is quite rare (1:15 000 – 200 000)
- **Collective** all together is **frequent** (1:1000 or higher)

CLASSIFICATION OF IMDs

- 1. According to the **speed of the onset** of clinical symptoms
- 2. According to the **metabolic systems**
- 3. According to the **subcellular localization** of modified protein
- 4. According to the **analytical method** used for the detection of IMD

1.According to the speed of the onset of clinical symptoms:

- Acute metabolic
- With intermittent course
- Chronically progressive

2. According to the metabolic system

Disorders of:

- amino acid metabolism
- carbohydrate metabolism
- organic acid metabolism
- **storage** diseases

3. According to the subcelullar localization of modified protein:

- cytosolic
- mitochondrial
- lysosomal
- peroxisomal
- Golgi apparatus
- ion channels etc.

MANIFESTATIONS OF IMDs

- Symptoms may appear at any age from birth to adulthood
- They may be brought on by foods, medications, dehydratation, minor illnesses, or other factors
- Symptoms may come on suddenly or progress slowly
- Severity of the disease depends on the degree of disability

CLINICAL MANIFESTATIONS OF IMD

- <u>Non specific symptoms</u> lethargy, coma, muscular hypo or hypertonia, convulsions, poor appetite, vomiting, abdominal pain, weight loss, jaundice, developmental delay...
- <u>Specific symptoms</u> abnormal odor of urine, sweat or saliva...,ectopia of lens,trombembolic events

NONSPECIFIC LABORATORY FINDINGS

- Acidosis (for example accumulation of lactic acid disorders of pyruvate dehydrogenase)
- Alkalosis
- Hypoglycaemia
- Hyperammonaemia (disorders of urea cycle enzymes)
- Hypoketosis (mitochondrial fatty acid oxidation disorders)
- Hyperketosis (some types of organic aciduria)
- Hypouricemia/hyperuricemia (disorders of purine metabolism)
- Hypocholesterolemia/hypercholesterolemia (7dehydrocholesterol reductase deficiency - Smith-Lemli-Opitz syndrom)

Strategy of the investigation of IMDs

LABORATORY DIAGNOSTICS OF IMD

- 1. At the level of **metabolites**
- 2. At the level of **enzymes**
- 3. At the molecular level (mutations)

1. LEVEL OF METABOLITES

- <u>Characteristic</u>: quantitative measurement of metabolites such as amino acids, carbohydrates, mucopolysaccharides, purine, pyrimidine, lipids, steroids...or various abnormal metabolites
- <u>Material</u>: serum or plasma, urine, cerebrospinal fluid, whole blood as dry blood spot on the filter paper...

DIAGNOSTICS TECHNIQUES

chromatography - paper

- thin layer
- liquid (ion exchange, high performance - HPLC)
- gas (with mass spectrometry GC/MS)

electromigration techniques

- classical electroforesis
- capillary electroforesis

tandem mass spectrometry MS/MS

THIN LAYER CHROMATOGRAPHY

Pozitive result of fructose and galactose in urine

Pozitive result of galactose in serum and urine

LIQUID ION-EXCHANGE CHROMATOGRAPHY

High peak of plasma phenylalanine

2. LEVEL OF ENZYMES

- <u>Characteristic</u>: measurement of decreased activity of the enzyme
- <u>Material</u>: leukocytes, erytrocytes or plateles isolated from peripheral blood, serum or plasma, culture of skin fibroblasts, tissue from muscle or liver biopsy

3. MOLECULAR LEVEL

- <u>Characteristic</u>: specific **DNA tests** show defect of gene
- <u>Material</u>: leukocytes of periferal blood, amniotic fluid cells obtained by amniocentesis, chorionic villus cells obtained by biopsy of placenta

TREATMENT OF IMD

- 1. At the level of **metabolites**
- 2. At the level of **enzyme**
- 3. At the **molecular level** (experimental)
- The only causal treatment at the molecular level
- The symptomatic treatment reduces symptoms but does not remove the cause.

General principles in the treatment of IMD

- Reducing or eliminating of any food that can't be metabolized properly (special diets)
- Removing toxic products of metabolism that accumulate due to the metabolic disorder (for example by dialysis)
- **Replacing the enzyme** that is missing or inactive, where it is possible (ERT)
- **Replacing other supplements** that support metabolism (for example vitamin cofactors)

Other treatment options

- Organ transplantation (liver, kidneys, bone marrow)
- Treatment of symptoms and complictions
- Gene transfer treatment of the future

MAJOR CATEGORIES OF IMDs

- Disorders of **AMINO ACID METABOLISM** (phenylketonuria, maple syrup urine disease...)
- UREA CYCLE defects
- Disorders of **CARBOHYDRATE METABOLISM** (galactosemia, glycogen storage diseases...)
- Disorders of **ORGANIC ACID METABOLISM** (metylmalonic and propionic acidemia)
- Disorders of FATTY ACID OXIDATION and MITOCHONDRIAL METABOLISM (Medium-change acyl-coenzyme A dehydrogenase deficiency...)

Phenylalanine metabolic pathway

PHENYLKETONURIA (PKU)

- Phenylalanin aromatic amino acid
- PKU is an IMD due to a **deficiency of hepatic phenylalanin hydroxylase**.
- Deficiency of this enzyme results in **high levels of phenylalanine in the blood**.
- Accumulation of phenylalanin and its metabolites leads to mental retardation, if this condition is not recognized and the strict diet isn't observed.

1. Case report – baby with PKU

High peak of plasma phenylalanine

1. Case report - phenylketonuria

<pre>¶Narozen(a) 25/11/2018 DiagnosaE70.0 Komentar Odber dne01/12/2018-09:45</pre>	Rodne cislo. Pojistovna	. 213	Vyska Hmotnost	0 0.0
Nazev vysetreni Vysledek Jedno	otky Refere	encni interval	Hodnoceni	
893 <u>S-Fenylalanin</u> 31.6 mg/0 894 S-Tyrosin 0.8 mg/0 * * * * * * * * * * * * * * * * * *	dl (dl (* * * * * * *	0.5 1. 0.5 2. * * * * * * *	2 VH (0 (x. * * * * * *	.). <x .) * *</x
<pre>¶Narozen(a) 25/11/2018 DiagnosaZ03.9 Komentar Odber dne04/12/2018-07:20</pre>	Rodne cislo Pojistovna	213	Vyska Hmotnost	0 0.0
Nazev vysetreni Vysledek Jedno	otky Refere	encni interval	Hodnoceni	
893 S-Fenylalanin 20.2 mg/d 894 S-Tyrosin 2.3 mg/d 1990 Material S/P: serum * * * * * * * * * * * * * * * * * * *	1] (1] (* * * * * * *	0.5 1. 0.5 2. * * * * * * *	2 VH (0 H (* * * * * * * 31	.). <x .)x * *</x

1. Case report - PKU

Narozen(a) 25/11/2018 DiagnosaZ03.9 Komentar Odber dne06/12/2018-07:10	Rodne cislo Pojistovna	.213	Vyska Hmotnost	0 0.0
Nazev vysetreni Vysledek Jedn	otky Refere	encni interval	Hodnoceni	
893S-Fenylalanin6.0 mg/894S-Tyrosin1.6 mg/1990Material S/P:serum	dl (dl (0.5 1.2 0.5 2.0	VH ((.x	.). <x .)</x
<pre>* * * * * * * * * * * * * * * * * * *</pre>	Rodne cislo. Pojistovna	.213	Vyska Hmotnost	00.0
Nazev vysetreni Vysledek Jed	notky Refer	encni interval	Hodnoceni	
893 S-Fenylalanin 1.2 mg, 894 S-Tyrosin 2.1 mg, 1990 Material S/P: serum * * * * * * * * * * * * * * * * * * *	/dl (/dl (0.5 1. 0.5 2. * * * * * * *	2 (. 0 H (. * * * * *	.x))x * * *

2. Case report – argininosuccinic aciduria

Materi	al cislo 7081 z	e dne 19/	10/2017-1	5:04	FN 1 telefon : !	Brno LO 53223 3:	KB-PDM 168	1 22/10-10:
	STAT	IM						
			53312					
¶	DN PEK JIP I+I	I 56 (tel	.4406,445	8)				
ſ		•		- /		JTTP-T	Lcast	72100702/
Naroz	en(a) 16/10/201	7				UII	r.cubt	13692/19
Diagno	sa P22 9	,	Podn	e ciel			Varalso	13092/19
Koment	ar		Rouii		··		Vyska	···· 0
Odher	dno 10/10/2017	14.40	2011	Scoviia			HMOTI	lost 0.0
ouber	une19/10/2017	-14:48						
Na	zev vysetreni	Vysledek	Jednotky	Ref	erencni int	terval	Hodnc	ceni
1 S	S/P-Urea	1.5	mmol/l	(1.4	4.3		(x)
2 S	S/P-Kreatinin	79	umol/l	(27	77	Н	()x
3 S	S/P-Kys. mocova	532	umol/l	(140	340	Н	()x
41 S	/P-Na	152	mmol/l	(132	147	VH	(). <x< td=""></x<>
42 S	/Р-К	4.3	mmol/l	(3.6	6.1		(.x.)
43 S	/P-Cl	115	mmol/l	i	95	116		(x)
28 S	/P-Ca	1.86	mmol/1	í	1.90	2.60	т.	x()
29 S	/P-Fosfat anorg	3.47	mmol/l	ì	1.45	2.00	VH	$() < \mathbf{v}$
46 S	/P-Ma	0.89	mmo1/1	ì	0 70	0 95	V 1 1	$(\cdot \cdot \cdot)$
6 S	/P-Bilirub.celk	128.9	umo1/1	í	0.,0	0.95		()
7 S	/P-Bilirub.prim	30.0	$\frac{1001}{1}$	ì				
8 S	/P-ALT	1.10	ukat/1	ì	0 15	0 73	ч	() >
9 S	/P-AST	1,13	ukat/1	· (0.38	1 21	11	(\ldots)
10 S	/P-GGT	2 58	ukat/1	(0.30	2 00		$(\cdot, \cdot, \mathbf{X})$
12 S	/P-LD	9 72	$\frac{ukat}{1}$	(3 75	10 00		(x) (
13 S	/P-CK	8 29	$\frac{ukat}{1}$	(1 26	10.00	ш	(
16 S	/P-Bilkovina c	56 7	$\alpha/1$	(1.20	0.00	п	$(\ldots) \mathbf{x}$
18 5	/P-Albumin	38.2	$\frac{g}{1}$	(40.0	10.0		(.x.)
17 S	/P-Glukoza	95.2	9/1 mmol/1		20.0	44.0		$(\cdot \mathbf{X} \cdot)$
25 9	/P_CPD	- 1 0	mmOI/I		2.8	4.4	н	()x
111 D	-Amoniak	VIZ LONG	mg/r	(U.U	5.0		
1990 M	atorial c/p.	viz Kollei	icar	l	50	92		
1001 U	laceriar b/r:	prazilia	h o d	1				
TAAT H	Taseno cer. V	10.12	noa.	(
Hodnet	a amoniaku 1407	2.						
nounot	a amonitaku 1497	unor/r.						

Hlaseno na oddel. v 16.15 hod.

Urea cycle

Aminogram of serum- report from AAA

3. Case report – SLOS - characteristic physical features

Mandibular hypoplasia

Genital malformations

3. Case report – SLOS - characteristic physical features

Polydactyly and syndactyly

SLOS - syntesis of cholesterol

3. Case report - SLOS

			100					
1								
Material cislo 2290 2	te dne 11/	05/2017-12	2:40	FN	Brno LO	KB-PDN	1 17/0	7-10:
		50010		telefon :	53223 3	168		
DN DEV TTD T. T	T E6 (tol	53312						
DN PER DIP 1+1	1 20 (ter	.4406,4458	5)			2012/12/12		332335-7 4
Narozan/a) 04/04/201	7				JIP-I	I.cast	: 7210	0702/
$\frac{1}{2}$	1	Deda					134	32/11
Komentar HEMOLVZA		Roune	tours	10.		vyska	1	0
Odber dne11/05/2017	-10:47	10115	scovii	a.,,205		HMOUI	lost	0.0
Mayor prostond	Unalodok	ladnabler		*********				
Mazev vysecieni	vysieder	зеапоску	ке	rerenchi in	terval	Hodno	ceni	1.0-0-0-0-0-
1 S/P-Urea	4.9	mmol/l	(1.8	6.4		(.x	.)
2 S/P-Kreatinin	20	umol/1	(14	34		(.x	.)
29 S/P-Fosfat anorg	1.54	mmol/l	(1.45	2.16		(x.	.)
46 S/P-Mg	0.89	mmol/1	(0.70	0.95		(.x	.)
8 S/P-ALT	0.46	ukat/1	(0.15	0.85		(.x	.)
9 S/P-AST	1.01	ukat/1	(0.27	0.97	н	(.)x
10 S/P-GGT	0.37	ukat/1	(0.37	3.00		(x.	.)
16 S/P-Bilkovina c.	40.4	g/1	(56.0	75.0	L	x(.)
18 S/P-Albumin	22.0	g/1	(38.0	54.0	L	x(.)
14 S/P-Cholesterol	0.6	mmol/l	(2.6	4.2	VL x	<. (.)
15 S/P-Triacylglyc.	0.96	mmol/l	(0.40	1.40		(.x	.)
101 S/P-HDLcholest.	nelze sta	anovit	(0.9	1.3			
103 S/P-LDL/chol.vyp	nelze vyp	pocitat	(1.2	3.0			
98 S/P-LDL/chol.mer	stanovit	nelze	(1.2	3.0			
89 Non-HDLchol.vyp.	stanovit	nelze	(0.0	3.8			
220 S/P-TSH	6.89	mU/1	(0.27	4.20	H	(.)x
221 S/P-1T4	13.6	pmol/1	(12.0	22.0		(x.	.)
275 S/P-Kortizol	396.1	nmol/1	(101.2	535.7		(.x	.)
563 S/P-PSH	0.37	0/1	(0.00	10.00		(x.	.)
564 S/P-LH	0.08	0/1	(0.00	6.00		(x.	.)
565 S/P-Prolaktin	402	mIU/1	(106	1270		(.x	.)
576 S/P-Testosteron	0.78	nmol/1	(
990 Material S/P:	serum			and the second second				
* * * * * * * * * *	* * * * *	* * * * *	* *	* * * * * *	* * * *	* *	* * *	* *
CHVALIL MUDr.Vinohra	dska Hana							

39

3. Case report - SLOS

7-dehydrocholesterol – record (graph from HPLC)

41

7 dehydrocholesterol – absorption spectrum

Standard

Patient sample

RESOURCES AND REFERENCES

Literature:

- Hoffmann, G.F., Nyhan, W.L. et al., Inherited Metabolic Diseases
- Fernandes, J., Saudubray, J.M., et al., Inborn Metabolic Diseases: Diagnosis and Treatment (2006)
- Scriver Ch.R., Beaudet A.L. et al., The metabolic and molecular bases of inherited disease

Website: www.omim.org