MOLECULAR GENETICS AND CYTOGENETICS LABORATORY AND METHODS

KARLA PLEVOVÁ

STATEMENT

- This presentation is intended exclusively for educational purposes
- Every form of misuse, including copying, distribution and sharing on public online platforms or social media is strictly prohibited and can be punished

OUTLINE OF THE PRESENTATION

- What to expect from a molecular genetics and cytogenetics laboratory (MGC lab)?
- How does it look the MGC lab?
- What methods are available in the MGC lab?

WHAT TO EXPECT FROM A MGC LAB?

MGC LAB = PARTNER

Specifics of a MG lab – a need for assays designed for individual families or individual patients →
a high proportion of laboratory developed tests compared to other diagnostic labs in hospitals

Discuss with the staff, learn what methods they use, know what the methods can be good for

APPLICATION OF RESULTS

- Establishing and refining diagnosis
- Hereditary predisposition assessment
- Disease prognostication
- Treatment optimization
- Disease activity monitoring
- Disease complication diagnostics

TECHNICAL ASPECTS OF THE LABORATORY METHODS

- Target regions, analytes
- Specificity and sensitivity, limit of detection
- Tools for data analysis and their limitations
- Time for processing few hours or few days?
- Standardization and validation
- Regular quality assessment
- Compliance with legislation regulations

laboratory report – interpretation ← a basis for laboratory test request

HOW DOES IT LOOK THE MG LAB?

SAMPLE PROCESSING AND SEPARATION

- Diverse input material (peripheral blood, tissue specimens etc.)
- Sterile hoods (esp. in connection with cell cultivation and biobanking of samples)
- Cell separation needed in specific contexts (e.g. analysis of somatic changes

MATERIALS USED

- Peripheral blood
- Bone marrow
- Liquid biopsies
- Aspirates
- Fine-needle biopsies
- Fresh tissue
- Formalin-fixed paraffin-embedded (FFPE) tissue
- Swabs (e.g. buccal)

Postnatal genetics
X
Prenatal testing
X
Oncology

PERIPHERAL BLOOD PROCESSING

- Different cell population used according to the application:
 - Leukocytes
 - Mononuclear cells
 - Granulocytes
 - Lymphocytes
 - Specific cell subpopulations

CELL CULTURE

 Culturing of peripheral blood, bone marrow, tissue sections, ...

LIQUID BIOPSIES

When invasive biopsies are not an option

Very low amount of material

- Plasma / serum
- Urine
- Joint fluid
- Cerebrospinal fluid

NUCLEIC ACID (RNA, DNA) ISOLATION

- pre-PCR area
- Manual and automated sample processing

Lysis

Add Beads

Cell Harvest

NUCLEIC ACID QUANTIFICATION

Spectroscopic and fluorimetric methods

NUCLEIC ACID QUALITY CONTROL

Electrophoretic methods

NUCLEIC ACID QUALITY CONTROL

- Alternative methods to gel electrophoresis
- Lower material input

POLYMERASE CHAIN REACTION (PCR)

- Fundamental reaction of molecular biology and genetics
- Amplification of regions of interests
- PCR assembling in pre-PCR area
- Carried out in thermocycler
- Various modifications
- PCR components
 - Template DNA
 - Primers
 - Nucleotides
 - Polymerase

PCR THERMOCYCLER ROOM

REAL-TIME PCR

- Quantitative method fluorescent detection of generated products
- Need for specific primers and probes
- Relative and absolute quantification

DROPLET DIGITAL PCR (DDPCR)

- Alternative method for marker absolute quantification
- Highly precise
- Need for specific instrumentation

POST-PCR AREA

- Performing QC and downstream analyses
 - DNA sequencing Sanger, NGS
 - Genomic arrays
 - · ...

SANGER SEQUENCING

Modification of PCR

- single primer extension
- Incorporation of dNTPs and ddNTPs

denatured

Applications

 Basic method for sequence variant detection (mutations, breakpoint localization)

SANGER SEQUENCING

Sequencing analysis output

Fragment analysis – modification of the method

NEXT-GENERATION SEQUENCING (NGS)

- ~ massively parallel sequencing (MPS)
- PCR amplification of DNA fragments or direct sequencing of individual fragments (single molecule sequencing)
- The most common approach sequencing by synthesis (Illumina sequencers)
- Millions of fragments are amplified simultaneously (vs capillary sequencer max 96 reactions)
- Short reads (tens to hundreds base pairs)

NGS - TARGETED REGIONS

Illumina machines and their capacity

NovaSeq

48 genomes/run, 6 TB/run

HiSeq 4000

12 genomes/run, 1.5 TB/run

NextSeq 500

1 genome/run, 120 GB/run

MiSeq

0.15 genome/run, 15 GB/run

MiniSeq

0.07 genome/run, 7.5 GB/run

iSeq

0.01 genome/rin, 1.2 GB/run

NGS - REGIONS OF INTEREST

genome

3 200 000 000 bp 30 x read depth

exome

20 000 genes 100 x read depth

selected genes or loci

< 100 genes \geq 1000 x read depth

AMPLICON SEQUENCING

PANEL SEQUENCING

- Sets of selected regions of interest
- Target enrichment by amplification or hybridization

- Why to use gene panels:
 - One disease can be caused by mutations in different genes
 - Certain genes are diagnostically relevant for several diseases

PANEL SEQUENCING

LYNX panel - diagnostics of molecular markers in lymphoid malignancies

¹CLL, ²MCL, ³FL, ⁴DLBCL, ⁵ALL, ⁶Ph-like ALL

List of genes

ARID1A ^{1,3}	ASXL ^{1,5}	ATM ^{1, 2}	BIRC3 ^{1, 2}	BRAF ^{1, 3-5}
BTG1 ⁶	CARD11 ¹⁻⁴	CCND1 ²	CD79A ^{1, 4}	CD79B ^{1, 2, 4}
CDKN2A ¹⁻⁵	CDKN2B ³⁻⁵	CHD2 ¹	CREBBP ^{1, 3-5}	CRLF2⁵
CSF2RA ⁶	EBF1 ⁶	EGR2 ¹	EP300 ^{1,3,4}	EPOR ⁶
ETV6⁵	EZH2 ³⁻⁵	FBXW7 ¹	FIGNL1 ⁶	FLT3 ⁵
FOXO1 ³	HIST1H1E ¹	IKZF1 ⁵	IKZF2 ⁶	IKZF3 ^{1,6}
IL2RB ⁶	IL3RA ⁶	IL7R ⁵	JAK11,5	JAK2 ^{1, 5}
JAK3⁵	KRAS ^{1, 5}	MEF2B ²⁻⁴	MGA ¹	KMT2A ^{1,5}
KMT2D ¹⁻⁴	MYC ^{3, 5}	MYD88 ¹⁻⁴	NF1 ^{1, 5}	NFKBIE ¹
NOTCH1 ¹⁻⁴	NOTCH2 ^{2, 4}	NRAS ^{1, 5}	P2RY8 ⁶	PAG1 ⁵
PAX5 ^{1,5}	PIM1 ^{1,4}	PTEN ³⁻⁵	PTPN11 ^{1,5}	POT1 ¹
RB1 ^{1,5}	RPS15 ¹	RUNX1 ⁵	SAMHD1 ¹	SETD2 ^{1,5}
SF3B1 ^{1,2}	SH2B3 ⁶	SHOX ⁶	TNFRSF14 ^{3, 4}	TP53 ¹⁻⁵
TYK2 ⁶	UBR5 ²	WHSC1 ²	XPO1 ¹	ZMYM3 ¹
exon-proximal probes 3´UTR region included introns included				

Rearrangements¹⁻

IGH@	79 subgenes
IGK@	45 subgenes
IGL@	42 subgenes
TRA@	96 subgenes
TRB@	64 subgenes
TRG@	13 subgenes
TRD@	11 subgenes

Translocations²⁻⁴

CCND1/IGH	t(11;14
BCL2/IGH	t(14;18
BCL6/IGH	t(3;14

CNVs¹⁻⁶

> 6 MB across whole genome

> 300 kb/1 Mb

Del17p

Tri12

cnLOH1-6

Trisomy^{1,2}

according to SNP probe density

WHOLE EXOME SEQUENCING (WES)

- identification of causative variants
- discovery of novel genetic markers
- searching for treatment targets

WHOLE GENOME SEQUENCING (WGS)

- Mainly experimental method for exploring unknown variants
- Applications similar to WES, additional information about non-coding regions and chromosomal abnormalities
- Typical sequencing coverage ~ 30–100x detection of somatic clonal or germline mutations
- Shallow sequencing (\sim 0.5-10x coverage) genome-wide detection of chromosomal abnormalities, low yield of mutation detection
- In clinical practice a potential benefit of combination of shallow and panel sequencing

GENOMIC ARRAYS

- Molecular cytogenetic technique for detection of genomic gains and losses
- Detection of copy-neutral loss of heterozygosity
- Not possible to detect balanced rearrangements
- Precise breakpoint localization, identification of affected genes
- High resolution, genome-wide
- Working with DNA, no need for viable cells

GENOMIC ARRAYS ARRAY-BASED COMPARATIVE GENOMIC HYBRIDIZATION (ACGH)

GENOMIC ARRAYS SINGLE NUCLEOTIDE POLYMORPHISM (SNP) ARRAY

EQUIPMENT FOR GENOMIC ARRAYS

CYTOGENETICS LAB

- Primary sample processing
- Cell culturing
- Methods not requiring PCR
- Imaging methods

CLASSICAL CYTOGENETICS – CHROMOSOME BANDING TECHNIQUES

MOLECULAR CYTOGENETICS

- Fluorescent in situ hybridization (FISH)
- Targets specific regions based on DNA sequence
- Detection of chromosomal abnormalities with diagnostic, prognostic and predictive value

Probe types:

MOLECULAR CYTOGENETICS

FISH methods for genome-wide analysis

mFISH

mBAND

THE END...

Contact:

<u>karla.plevova@mail.muni.cz</u> or <u>plevova.karla@fnbrno.cz</u>
Internal Medicine – Hematology and Oncology, University Hospital Brno CEITEC MU

Thank you for your attention!