MUNI NED

MUNI MED

Introduction to neurophysiology Cellular base of nervous system Synapse Somatosenstivity and pain

Kamil Ďuriš

Department of Pathological Physiology (A18) kduris@med.muni.cz

MUNI

MED

3 Introduction to neuroscience - The regulatory role of nervous system

Why and how to **STUDY** neuroscience

MED

4 Introduction to neuroscience - The regulatory role of nervous system

What is nervous system good for?

MUNI

MED

5 Introduction to neuroscience - The regulatory role of nervous system

Unicellular organism

- One cell has to do everythinglower effectivity
- Total dependence on environment
- High level of stress
- Short life time

Multicellular organism

- Functional specialization of particular cells – higher effectivity
- Inner environment homeostasis
- Lower level of stress
- Longer life time

- Essentials for survival of multicellular organism
- Maintaining homeostasis
 - The composition of inner environment
 - The integrity of organ/ bodily barriers
- Coordination of bodily functions
 - To receive signals from outer and inner environment
 - To process this information
 - To respond in a coordinate manner to these stimuli

1	Integration	\mathbf{n}	
Input		Output	
REC	REGULATION		

- Regulation
 - Nervous
 - Humoral

- Regulation
 - Nervous
 - Humoral

http://biology.about.com/od/anatomy/p/Hypothalamus.htm

MED

Central nervous system controls both types of regulations

Humoral regulations

- Hormone
- Non-specific channel of conduction (blood stream)
 - Target site defined by specific receptor

Nervous regylations

- Neurtransmitters
- Specific channel of conduction
 - Target site defined by infrastructure

 $M \vdash D$

Humoral regulations

- Hormone
- Non-specific channel of conduction (blood stream)
 - Target site defined by specific receptor
 - Low energetical demands
 - Slow
 - Long duration

Nervous regylations

- Neurtransmitters
- Specific channel of conduction
 - Target site defined by infrastructure
 - High energetical demands
 - Fast
 - Short duration

 $M \vdash D$

12 Introduction to neuroscience - The regulatory role of nervous system

MUNI Med

13 Introduction to neuroscience - The regulatory role of nervous system

MUNI Med

MUNI MED

Evolutionary approach

 Evolutionary old structures have not been replaced by new ones during evolution, but the old has been kept and the new added

Evolutionary approach

- Evolutionary old structures have not been replaced by new ones during evolution, but the old has been kept and the new added
- Evolutionary younger structures were associated with new functions or with the improvement in existing functions

Evolutionary approach

- Evolutionary old structures have not been replaced by new ones during evolution, but the old has been kept and the new added
- Evolutionary younger structures were associated with new functions or with the improvement in existing functions
- It is important to ask what is any particular function good for and how it has been improved in course of evolution

Evolutionary approach Evolution is not revolution

MUNI MED

Evolution of the nervous system

Input — Integration — Output

Gerald Schneider. *9.14 Brain Structure and Its Origins, Spring 2014*. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed). License:Creative Commons BY-NC-SA

19 Hierarchy and evolution of nervous system

MUNI Med

Evolution of the nervous system

Input — Integration —

A. Myoepithelium: contractile epithelial cells responding to stimulation and interconnected by electrical synapses (gap junctions)

B. Protomyocytes separate from sensory epithelium, all connected by electrical synapses

→ Output

D. Neurons appear, separate from both neurosensory cells and contractile cells. Chemical synapses appear.

C. Protoneurons appear, sensory and connected to separate contractile cells

Gerald Schneider. *9.14 Brain Structure and Its Origins, Spring 2014*. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed). License:Creative Commons BY-NC-SA

MUNI MED

Evolution of the nervous system

Gerald Schneider. *9.14 Brain Structure and Its Origins, Spring 2014*. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed). License:Creative Commons BY-NC-SA

MUNI MED

Compartmentalization

- Cellular specialization leads to compartmentalization on several levels
 - Tissue level
 - Organ level
 - Organ system level
- There are barriers in between compartments
- Properties/content may vary among different compartments

Compartmentalization

 $M \in D$

Intracranial compartment

sinus

space

- ✓ "Very specific region"
- ✓ Brain
- ✓ Cerebrospinal fluid
- ✓ Blood (intravasculary)
- **Barriers** \checkmark
 - Meningeal ۲
 - Hematoliquor •
 - Hematoencephalic ullet

Hematoencephalic barrier

- Highly organised structure
 - Endothelial cells (low permeability thanks to zonlua occludens)
 - Basal membrane
 - Astrocytes
 - Pericytes

https://upload.wikimedia.org/wikipedia/commons/1/12/Blood_vessels_brain_english.jpg

MUNI MED

Circumventricular organs

- Rich vascularisation
- Modified hematoencephalic barrier
- Sensors
- Secretion

The circumventricular organs

http://www.neuros.org/index.php?option=com_photos&view=photos&oid=hafizbilal

MUNT

MED

Cerebrospinal fluid

- Content
 - ✓ High levels of Mg^+ and Na^+
 - ✓ Low levels of K^+ and Ca^{2+}
 - ✓ Almost no cells (max 5/ml)
- Function
 - ✓ Protection
 - ✓ Microenvironment of neurons and glia
 - Metabolic function
 - Immunologic function
 - Transport function and so on

Cerebrospinal fluid

- Clear fluidproduced by active secretion
- Liquor space
 - lined by ependymal cells
 - ≻ 150-250 ml
- Production
 - ✓ Plexus choroideus (PCh) -70%
 - ✓ Cell metabolism
 - ✓ Cappilary filtration
 - ➢ 450-750 ml/day
- Resorbtion
 - ✓ Archnoid granulations (AG)

http://www.control.tfe.umu.se

MUNI MED

Intracranial compartment

- Brain
- Cerebrospinal fluid
- Blood (intravasculary)
- Intracranial pressure (ICP)
 - Critical determinant of cerebral perfusion
- Cerebral perfusion pressure (CPP) pressure gradient driving blood flow intracranialy

!!! CPP = MAP – ICP !!!

Cerebral perfusion pressure Intracranial pressure Mean arterial pressure MUNI MED

Cellular base of nervous system Synapse

30 Úvod - buněčný podklad – synapse - somatosenzitivita, bolest

Cellular base of nervous system

- Neuronal cells
 - Reception, integration and propagation of information
 - Unique, irreplaceable
- Neuroglial cells
 - Support for neuronal cells
 - Easily replacable
- The total amount of neuronal cells 100 billions (10¹¹)
- Neruon/glia ratio
 - 1/10 50 (Principles of Neural Science, 4th ed., 2012)
 - 1/2 10 (Principles of Neural Science, 5th ed., 2012)
 - 1/1 (Nolte's Human Brain, 7th ed., 2015)

Neuroglial cells

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune function
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining
 - (liquro-encephalic barrier)
- 32 Intracranial compartment, Cellular base of nervous system

Peripheral nervous system

- Satelite cells
 - Support functions in PNS

- Schwan cells
 - Myelin sheat

http://www.slideshare.net/drpsdeb/presentations

MED

Background Activity

https://upload.wikimedia.org/wikipedia/commons/e/ed/Neuron_Cell_Body.png

Background Activity

MUNI MED

Background Activity

Fast axonal transport

- bidirectional
- ATP dependant
- associated with microtubules:

dynein and kinesin

Fast axonal transport

36

Golgi derived vesicles lysosmes, mitochondria structural elements of endoplasmic reticulum

Slow axonal transport

- unidirectional,
- ATP independant
- conducted by sliding, polimerizing and protein interacting

Slow axonal transport

microfilaments, microtubules neurofilaments cytosolic protein complexes

http://www.oapublishinglondon.com/images/article/pdf/1397255957.pdf
Membrane potential

• Due to differences in the concentrations of ions on opposite sides of a cellular membrane

http://www.slideshare.net/drpsdeb/presentations

MUNI

MED

Resting membrane potential of a neuron

- Highly instable state of membrane
- Why? Speed!
- High energetical demands
 - ✓ Oxygen 20% of total body consumption
 - ✓ Glucose 25% of total body consumption

Action potential

Quick voltage change on the membrane ۲

Dendrites

Cell body

Presynaptic.

Synaptic

dendrite

cleft

axon terminal

Postsynaptic

Synapse

-

- Spreads along the axon •
- All or nothing principle ۲

Resting potential

around -70 mV

Treshold potential around -55 mV

Action potential spreading

40 Intracranial compartment, Cellular base of nervous system

http://www.slideshare.net/drpsdeb/presentations

Saltatory conduction

- Myelin sheat
- Nodes of ranvier
- Economy
- Speed of conduction
- Speed of conduction also dependent of nerve fibre diameter
 - the electrical resistance is inversly proportional to area of crosssection

 $M \vdash D$

Classification of nerve fibers

- In humans mostly myelinated
- All fibers are myelinated in CNS
- Non-myelinated are evolutionary old ones

http://neuroscience.uth.tmc.edu/s2/chapter04.html

Neuronal classification

Basis for classification	Example	Functional implication	Structure
3. Number of processes One process exits the cell body	Unipolar neuron (dorsal root ganglion cell)	Small area for receiving synaptic input: highly specialized function	Unipolar Soma
Two processes exit the cell body	Bipolar neuron (retinal bipolar cell)	Small area for receiving synaptic input: highly specialized function	Bipolar
Many processes exit the cell body	Multipolar neuron (spinal motor neuron)	Large area for receiving synaptic input; determines the pattern of incoming axons that can interact with the cell	Multipolar
mpartment, Cellular base of	nervous system		2 Ch

Neuronal classification

Basis for classification	Example	Functional implication	Structure
2. Dendritic pattern Pyramid-shaped spread of dendrites	Pyramidal cell (hippocampal pyramidal neuron)	Large area for receiving synaptic input; determines the pattern of incoming axons that can interact with the cell (i.e., pyramid-shaped)	Pyramidal cell
Radial-shaped spread of dendrites	Stellate cell (cortical stellate cell)	Large area for receiving synaptic input; determines pattern of incoming axons that can interact with the cell (i.e., star-shaped)	Stellate cell

Neuronal classification

Basis for classification	Example	Functional implication	Structure
1. Axonal projection Goes to a distant brain area	Projection neuron or Principal neuron or Golgi type I cell (cortical motor neuron)	Affects different brain areas	Dorsal root ganglion cell
Stays in a local brain area	Intrinsic neuron or Interneuron or Golgi type II cell (cortical inhibitory neuron)	Affects only nearby neurons	Retinal bipolar cell

Synapse

- Communication between
 neurons
- Electrical
- Chemical

http://www.slideshare.net/CsillaEgri/presentations

Electrical synapse

- Evolutionary old
- Less frequent than ch.
- Ubiquitous

http://www.slideshare.net/CsillaEgri/presentations

MUNI

MED

Electrical synapse

- Evolutionary old
- Less frequent than ch.
- Ubiquitous
- Gap junctions
- Bidirectional tranmission
- Fast
- Strength of signal may decrease

http://www.slideshare.net/CsillaEgri/presentations

Chemical synapse

- **Evolutionary young** •
- Majority type of s. ullet

Chemical synapse

- Evolutionary young
- Majority type of s.
- Unidirectional
- Synaptic cleft
- Neurotransmitter
- Constant signal strength

MED

Neurotrasnsmiter

http://www.slideshare.net/CsillaEgri/presentations

• Present in presinaptic neuron

51 Synapse and integration of information at the synaptic level

Neurotrasnsmiter

http://www.slideshare.net/CsillaEgri/presentations

MUNI

MED

- Present in presinaptic neuron
- Release into the synaptic cleft due to depolarization of presynaptic neuron (Ca²⁺ dependent mechanism)

Neurotrasnsmiter

http://www.slideshare.net/CsillaEgri/presentations

- Present in presinaptic neuron
- Release into the synaptic cleft due to depolarization of presynaptic neuron (Ca²⁺ dependent mechanism)
- Specific receptor has to be present in postsynaptical membrane

Neuromuscular junction

https://classconnection.s3.amazonaws.com/754/flashcards/2034754/png/ch_7_pic_41349381290275.png

MUNI Med

http://www.compoundchem.com/2015/07/30/neurotransmitters/

MUNT MED

Excitatory/inhibtory postsynaptic potencial

http://www.slideshare.net/drpsdeb/presentations

Signal summation

http://www.slideshare.net/drpsdeb/presentations

MUNI

MED

•

•

Spatial

Signal summation

http://www.geon.us/Memory/images/Summation.jpg

60 Synapse and integration of information at the synaptic level

Synaptic convergence

Average number of synapses in one neuronal cell in primates

- Primary visual cortex (area17)
 - aprox. 4 000
- Primary motor cortex (area4)
 - aprox. 60 000

"Convergence" of multiple input fibers onto a single neuron. *A*, Multiple input fibers from a single source. *B*, Input fibers from multiple separate sources.

http://www.slideshare.net/drpsdeb/presentations

Synaptic divergence

Figure 46–11

"Divergence" in neuronal pathways. *A*, Divergence within a pathway to cause "amplification" of the signal. *B*, Divergence into multiple tracts to transmit the signal to separate areas.

Networking

Networking

MUNI Med

Neurotransmission vs. Neuromodulation

• Information transmission

• Regulation of NS activity

MUNI

MED

Neurotransmission

- Information transmission
- Specific

vs. Neuromodulation

• Regulation of NS activity

MUNT

MED

• Diffuse (volume transmission)

Neurotransmission

- Information transmission
- Specific

vs. Neuromodulation

- Regulation of NS activity
- Diffuse (volume transmission)

• Receptors – ion channels

• Receptors – G-proteins

 $M \in D$

Neurotransmission

- Information transmission
- Specific

- Receptors ion channels
- Short duration
 - membrane potential changes

vs. Neuromodulation

- Regulation of NS activity
- Diffuse (volume transmission)
- Receptors G-proteins
- Longer duration
 - changes in synaptic properties

 $M \vdash D$

Acetylcholine

- Nucleus basalis (Meynerti) abd other nuclei
- Nicotin receptors
- Muscarin receptors
- Sleep/wake regulation
- Cognitive functions
- Behavior
- Emotions

Neocortex

Cingulate gyrus

Basal ganglia

¹ Basal forebrain constellation of

cholinergic neurons

including basal nucleus of Meynert Corpus callosum

Thalamus

Cerebellum

² Dorsolateral pontine

tegmental constellation of cholinergic neurons

MUNT

MED

Noradrenalin

- Locus coeruleus
- Nuclei raphe caudalis
- Vigilance
- Responsiveness to unexpected stimuli
- Memory
- Learning

Dopamin

- Nigrostriatal system
 - Movement
 - Sensory stimuli
- Ventrotegmentno-mesolimbicfrontal system
 - Reward
 - Cognitive function
 - Emotional behavior
- Tubero-infundibular system
 - Hypotalamic-pituatory regulation
- D1 receptors excitatory
- D2 receptors inhibitory

http://www.slideshare.net/drpsdeb/presentations

Serotonin

- Nuclei raphe rostralis
- Nuclei raphe caudalis
- Anxiety/relaxation
- Impulsive behavior
- Sleep

http://www.slideshare.net/drpsdeb/presentations
Neuromodulatory systems

Jeffrey L. Krichmar, Adaptive Behavior 2008; 16; 385

http://image.slidesharecdn.com/neuromodulationincogniti on-140119031056-phpapp02/95/neuromodulation-incognition-5-638.jpg?cb=1419657931

Neuromodulatory systems

74 Synapse and integration of information at the synaptic level

http://ausm.org.uk/wp-content/uploads/2015/02/Dopamine_Norepinephrine_Serotonin.jpg

MUNI

MUNI MED

Somatosensitivity, pain

75 Somatosensitivity, viscerosensititvity, proprioception and pain I

MUNI Med

Receptors/sensors

- Energy convertor
 - Signal reception
 - Signal transformation
- Receptor potential
 - Generator potential
- Action potential

http://www.slideshare.net/CsillaEgri/presentations

Receptor/generator and action potential

http://www.slideshare.net/drpsdeb/presentations

78 Somatosensitivity, viscerosensititvity, proprioception and pain I

Receptors/sensors

- Energy convertor
 - Signal reception
 - Signal transformation
- Receptor potential
 - Generator potential
- Action potential
- Adequate stimulus
- Non adequate stimulus

http://www.slideshare.net/CsillaEgri/presentations

Receptors/sensors

http://www.slideshare.net/CsillaEgri/presentations

 $M \in D$

81 Somatosensitivity, viscerosensititvity, proprioception and pain I

MUNI Med

Intensity coding

How much? for the duration of a stimulus. Stimulus Stimulus Receptor Receptor potential Axon of sensory neuron Action potentials in sensory neuron Time -

http://www.slideshare.net/CsillaEgri/presentations

MUNT

MED

 Amplitude of receptor potential is transtucted into the frequency of AP

Qualitative information

• The law of specific nerve energies:

The nature of perception is defined by the pathway over which the sensory information is carried

 Labeled line coding define the information about quality

Qualitative information What?

- Labeled line coding
- Receptive field
- Nerve stimulation mimics receptor stimulation

A SOMATOSENSORY

Arm Head

http://www.slideshare.net/drpsdeb/presentations

Receptive fields

- Various size and overaly
- Small receptive field high resolution
- Spatial resolving power increased by lateral inhibition

http://www.slideshare.net/drpsdeb/presentations

Receptor adaptation

- The decline of receptor responses in spite of stimulus presence
- Tonic receptors slow adaptation – presence of stimulus, position
- Phasic receptors rapid adaptation – change of stimulus

http://www.slideshare.net/CsillaEgri/presentations

MUNI Med

MED

Stimulus

Evolutionary point of view

- The signals indicating potential damage are the most important and the corresponding systems evolved early
 - Pain
 - Temperature
- The touch signals have adaptive value and evolved later

http://www.slideshare.net/CsillaEgri/presentations

Evolutionary point of view

http://www.slideshare.net/CsillaEgri/presentations

Evolutionary point of view

• The structure of the receptor, nerve fibers and pathways reflects the evolution

http://www.slideshare.net/CsillaEgri/presentations

Nerve fibres

91 Somatosensitivity, viscerosensititvity, proprioception and pain I

http://www.slideshare.net/CsillaEgri/presentations

Viscerosensitivity

- An information from visceral and cardiovascular system
- Linked to the autonomic nervous system
- ✓ Parasympathetic nervous system (VII., IX., **X., sacral PNS**) The most of information does not reach higher structures ۲ "Operational information" (blood pressure, pO2, pCO2) than hypothalamus The most of informatio ulletSympathetic nervous system "Potential danger" (pressure, pain, cold)

Proprioception

- Information from
 - Muscles
 - Tendons
 - Joints
- Important for
 - Precise coordination of movements
 - Overload protection

- Three systems
- (Archispinothalamic)
 - Interconnection of adjacent segments (tr. Spinospinalis)

 $\mathbf{N} = \mathbf{I}$

- Paleospinothalamic
 - tr. Spinoreticularis, tr. Spinotectalis...
- Neospinothalamic
 - tr. Spinothalamicus
- Dorsal column system
 - tr. Spinobulbaris

- Three systems •
- ۲
- Evolutionary old structures have not been replaced by new Dors ones during evolution, but the old has been kept and the • new added • — tr.

- Paleospinothalamic
 - Low resolution dull, diffuse pain ("slow pain")
- Neospinothalamic
 - High resolution sharp, localized pain ("fast pain"), temperature
 - Low resolution touch
- Dorsal column system
 - High resolution fine touch

- Paleospinothalamic •
 - Low resolution dull, diffuse pain ("slow pain")
- Neospinothalamic ۲
 - Long-term survival - High resolution – sharp, localized pain ("fast pain"), temperature

Immediate survival

 $\mathbb{N} \vdash \mathbb{N}$

- Low resolution touch ____
- Dorsal column system •
 - High resolution fine touch

Paleospinothalamic system

- Tr. Spinoreticularis, spinotectalis...
- Evolved before neocortex
- The primary connection to the subcortical structures
- Basic defensive reactions and reflexes vegetative response, reflex locomotion opto-acoustic reflexes etc.
- Secondarily connected to cortex (after its evolution; tr. Spinoreticulo-thalamicus), but this system has a small resolutions – dull diffuse pain
- This tract is not designed for "such a powerful processor as neocortex"
- Approximately half of the fibers cross the midline

Neospinothalamic system

- Tr. Spinothalamicus
- Younger structure primarily connected to neocortex
- "High capacity/resolution"
- Detail information about pain stimuli (sharp, localized pain)
- Information about temperature
- Crude touch sensation
- The fibers cross midline at the level of entry segment

Dorsal column system

- Tr. Spinobulbaris
- The youngest system
- High capacity
- Tactile sensation
- Vibration
- Fine motor control
- Better object recognition
- Adaptive value
- The fibers cross midline at the level of medulla oblongata

Dermatoms

• Somatotopic organization somatosensitve nerves

http://www.slideshare.net/drpsdeb/presentations

http://www.slideshare.net/CsillaEgri/presentations

MUNI

Trigeminal system

- Spinal TS ullet
 - Pain, temperature
- Main sensory TS •
 - Touch, proprioception

http://www.slideshare.net/drpsdeb/presentations

102 Somatosensitivity, viscerosensititvity, proprioception and pain II

Table I The Sensory Modalities Represented by the Somatosensory Systems				
Modality	Sub Modality	Sub-Sub Modality	Somatosensory Pathway (Body)	Somatosensory Pathway (Face)
Pain	sharp cutting pain		Neospinothalamic	- Spinal Trigeminal
	dull burning pain		Paleospinothalamic	
	deep aching pain		Archispinothalamic	
Temperature	warm/hot		Paleospinothalamic	
	cool/cold		Neospinothalamic	
Touch	itch/tickle & crude touch		Paleospinothalamic	
	discriminative touch	touch	Tr. spinobulbaris	Main Sensory Trigeminal
		pressure		
		flutter		
		vibration		
Proprioception	Position: Static Forces	muscle length		
		muscle tension		
		joint pressure		
	Movement: Dynamic Forces	muscle length		
		muscle tension		
		joint pressure		
		joint angle		

http://neuroscience.uth.tmc.edu/s2/chapter02.html

MUNI

Thalamus and neocortex

- Almost all the afferent information gated in the thalamus
- Olfaction is an exception
- Bilateral connections between neocortex and thalamus

http://www.slideshare.net/drpsdeb/presentations

Neocortex

- Somatotopic organization
- Cortical
 magnification

http://www.slideshare.net/drpsdeb/presentations

http://www.shadmehrlab.org/Courses/physfound_files/wang_5.pdf

MUNT

Pain

- Distressing feeling associated with real or potential tissue damage
- Sensor x psychological component
- Physiological pain (nociceptor activation)
- Pathological pain (not mediated by nociceptors)
- Acute (up to 6months) "activiting"
- Chronic (more than 6 months) "devating"

https://www.cheatography.com/uploads/davidpol_1460561912_Pain_Scale__Arvin61r58.png

Descendent pathways modulating pain

- Somatosemcoric cortex
- Hypotalamus
- Periaquaeductal gray
- Nuclei raphe

Receptor

neurons

Somatic sensory cortex

> Ventral posterior nuclear complex of thalamus

MUNI

MED

Caudal midbrain

Rostral

medulla

Spinal cord

Cerebrum

107 Somatosensitivity, viscerosensititvity, proprioception and pain II

Pain modulation on the spinal level

Gate control theory of pain

https://en.wikipedia.org/wiki/Gate_control_theory
Referred pain

http://www.slideshare.net/drpsdeb/presentations

MUNI

MED

Phantom limb pain

http://www.slideshare.net/drpsdeb/presentations

MUNI

MED

MUNI NED