General pathology

General pathology I.

Regressive changes (necrosis, atrophy, disorders of metabolism) Pigments and concrements

Regressive changes (-)

Progressive changes (+)

metabolic
change
atrophy

morphological and functional alteration

- hyperplasia
- hypertrophy
- regeneration
- repair
- metaplasia
- dysplasia
- neoplasia

APOPTOSIS

- process of programmed death, active process
- Il no inflammatory response (exceptions possible)

APOPTOSIS in <u>physiological situations</u>

* embryogenesis (morphogenetic, histogenetic, phylogenetic)

- * hormone-dependent involution
 - endometrial cell breakdown during the menstrual cycle
 - ➡ prostatic involution after castration

* defence mechanisms during immune response

- death of neutrophils in an acute inflammatory response
- ⇒ elimination of self-reactive T-lymphocytes during their maturation in the thymus, e.g.

elimination of damaged cells

during aging

APOPTOSIS in <u>pathological conditions</u>

aleel inhibiten of onesteric

➡ tumors

- follicular lymphoma
- mammary, prostatic, e.g., carcinomas with mutation in p53 gene)

⇒autoimmune diseases

• SLE

➡ infections

- herpes simplex virus
- poxviruses
- TBC

APOPTOSIS in <u>pathological conditions</u>

* pathological induction of apoptosis

⇒ AIDS

- ⇒ neurodegenerative diseases
 - m. Alzheimer, m. Parkinson, ALS
- ➡ myelodysplastic syndrome
 - aplastic anemia
- ➡ ischemic injury
 - acute myocardial infarction

NECROSIS

★ death of tissue in a living organism (irreversible process!!) → always with inflammatory reaction !!

causes:

- **⇒**ischemia
- ➡ radiation
- ⇒ toxins, ...

nuclear changes:

- ⇒ pyknosis with increased basophilia (hyperchromasia)
- ⇒ karyorrhexis
- ⇒ karyolysis (fading of basophilia of the chromatin)

cytoplasmic changes

- ➡ hypereosinophilia
- ⇒ breakdown of organellar/plasma membranes

NECROSIS - types

× Simple (rare)

Coagulative (organs with protein predominance)

- ⇒ ischemic = infarction
- ⇒ secondary hemorrhage = hemorrhagic infarction (lung, bowel)
- ⇒ caseous (cheese-like) –TBC

Colliquative (organs with lipid predominance)

- ⇒ brain
- ➡ pancreas

× Fibrinoid

- ⇒ the base of the ulcer
- ⇒ arterial wall

NECROSIS - healing

→ inflammatory reaction = inflammatory infiltrate

(neutrophils, histiocytes..... lymphocytes) + afterwards **nonspecific** granulation tissue (fibroblasts, angiogenesis) $\rightarrow \rightarrow$ maturation of the fibrous tissue \rightarrow

→ scar (within 6 weeks) + possible secondary alterations (dystrophic calcification, e.g.)

 \rightarrow **pseudocyst** (colliquation of a necrotic tissue)

GANGRENE

x = modified necrosis with putrefaction

× types:

⇒ dry

• diabetic foot

⇒ wet

• decubitus

⇒ gas (Clostridium perfringens)

coagulative necrosis - myocardial infarction

cardiomyocytes – norm

coagulative necrosis – myocardial infarction

coagulative necrosis – myocardial infarction

coagulative necrosis – renal infarction

coagulative necrosis - renal infarction

coagulative necrosis - renal infarction

hemorrhagic necrosis – pulmonary infarction

Wedge-shaped subpleural infarction

Pulmonary artery with embolus

hemorrhagic necrosis – pulmonary infarction (review)

hemorrhagic necrosis – pulmonary infarction, destruction, nuclear detritus, erythrocyte hemolysis

caseous necrosis -TBC bronchopneumonia / miliary TBC

caseous necrosis-lymph node-TBC granuloma

4 - peripheral lymphocytic rim

colliquative necrosis - encephalomalacia

colliquative necrosis (subacute) encephalomalacia + pseudocyst formation

Colliquative necrosis – pseudocyst formation – white matter subcortical area

colliquative necrosis - cerebral infarction, macrophages

fibrinoid necrosis - rheumatoid nodule

fibrinoid necrosis - rheumatoid nodule

fibrinoid necrosis of renal arteriole

fibrinoid necrosis - arteritis, Mallory trichrom (stains normal fibrous tissue blue)

ATROPHY

= pathologic shrinkage in the size of normally evolved organ (X hypoplasia, aplasia)

types:

- ⇒ **simple** (reduction in cell size)
- ⇒ **numeric** (reduction in cell numbers)

ATROPHY

etiology:

- physiologic involution (thymus)
- Iack of nutrition ->> cachexia
- > pressure atrophy (compressed tissue)
- Ioss of function (immobilisation of a limb)
- Ioss of blood supply
- Ioss of innervation
- Ioss of endocrine stimulation
- hormone-induced atrophy (in the skin after topically applied corticosteroids)
- × idiopathic

Disorders of metabolism (dystrophy)

- = regressive change due to abnormal metabolism of the cell
- disorders of metabolism of:
 - 1. Proteins
 - 2. Lipids
 - 3. Carbohydrates (glycogen, ...)
 - 4. Mineral elements
 - 5. Water

Water+minerals distribution disturbances

- x type/localisation associated with the distribution of ions:
 - ➡ EC: Na⁺, Cl⁻, HCO₃⁻, Mg²⁺, sulphates
 - ➡ IC: K⁺, phosphates

A. <u>extracellular changes:</u>

- \rightarrow dehydration
- + \rightarrow hyperhydration, oedema
- venous
- Iymphatic
- hypoalbuminaemic
- inflammatory
- anasarca = extreme generalised oedema of connective tissues

Water+minerals distribution disturbances

B. intracellular changes:

(caused by ischemia, hyperaldosteronism, viral infections, toxic insults)

Swelling - "intracellular oedema", granulated cytoplasm

⇒ Vacuolisation

- cytoplasmatic vacuoles containing water \rightarrow foam appereance
- specific subtypes i.e. ballooning degeneration in hepatocytes (ischaemia, toxic, etc.)
Swelling of tubular cells in kidney

epithelial cells of proximal tubules

Swelling of tubular cells in kidney

Disorders of protein metabolism

- IC and EC hyaline material deposition (transformed proteins – collagen, keratin, usually in form of pink globules)
- 2) Inclusion bodies
- 3) Mucinous dystrophy
- 4) Amyloidosis
- 5) Gout

Hyaline deposition in kidney tubules 200x

Hyaline change - intracellular

- → inclusions found in the cytoplasma of hepatocytes
- ⇒ associated with alcoholic liver disease

* Russell bodies

- eosinophilic, immunoglobulin-containing inclusions
- ⇒ usually found in a plasma cells undergoing excessive synthesis of immunoglobulin

* hyalin = intra- and extracellular homogenous eosinophilic substance, pink in HE staining

Mallory bodies (twisted-rope pink appearance)

Hyaline change - extracellular

- = EC hyaline accumulation
- tendency to calcification
- diff.dg.: amyloid
- * Hyaline change of the scars

➤ Hyaline change of the serous membranes
⇒ coating of the organ with a fibrous hyaline -> sugar-coated spleen

Hyaline change – EC (sugar coated spleen)

Inclusion bodies

= pathologic intracellular particles

- cytoplasmatic / nuclear
- variable size
- eosinophilic or basophilic
- * typically represent sites of viral multiplication
 - ⇒ viral inclusion bodies: herpes simplex virus, CMV owl eyes, rabbies Negri bodies)

Diagnostic methods: special staining, IHC, in situ hybridisation, ELM

CMV colitis (owl-eyes)

Mucinous change/accumulation

1) epithelial

2) mesenchymal

PAS (Periodic acid-Schiff) - neutral mucosubstances

Alcian blue (acid mucosubstances)

A) Mucinous change/accumulation – epithelial

cystic fibrosis

⇒ inherited metabolic disorder (AR - CFTR gen)

⇒ abnormal mucous secretion – mucus plugs exocrine ducts -> parenchymal damage to the affected organs.

⇒ clinically:

- bronchiectasis
- recurrent bronchopulmonary infections
- pancreatic fibrosis chronic pancreatitis
- malabsorbtion due to defective pancreatic sekretions

* alopecia mucinosa (follicular mucinosis)

- ⇒ male pattern baldness due to irreversible loss of follicles
- accumulation of mucinous material in the damaged hair follicles and sebaceous glands creates an inflammatory condition and subsequent degenerative process

Cystic fibrosis

- 2 thickened fibrous connective tissue septa
- 3 pancreatic acini

cystic fibrosis (atrophy of pancreatic parenchyma)

alopecia mucinosa (follicular mucinosis)

B) Mucinous change/accumulation - mesenchymal

× ganglion

- pseudocyst formed by fibrous tissue, contains amorphous, often myxoid material
- ⇒ localization near a joints or a tendon
- ⇒ postraumatic

x myxoedema

- ➡ intradermal depositions of mucous substances
- ➡ associated with hypothyreoidism

Mucinous change/accumulation – depositions of mucinous substances in dermis

Mucinous accumulationdepositions of mucinous substances in dermis (Alcian blue staining)

Amyloidosis

- amyloidosis refers to a variety of conditions wherein amyloid proteins are extracellularly abnormally deposited in tissues or organs
- **amyloid** = group of pathological glycoproteins, fibrillary ultrastructure, β-pleated sheet microstructure, non-digestible.

Amyloidosis

can be classified according to:

issue distribution

- *systemic* material is deposited in a wide variety of organs
- ⇒ <u>localised</u>

✗ aetiology:

- ⇒ hereditary
- ➡ acquired: AL, AA, etc
- * chemical composition

Amyloidosis

<mark>≭</mark> gross:

➡ in major deposition affected organs with waxy appearance, greyish-white, slightly hardened.

× micro:

extracellular (often in BM) deposits of homogenous eosinophilic material (similar to hyalin, fibrin, etc.) -> "pressure" atrophy -> parenchymal destruction -> organ dysfunction

histochemical identification:

- ⇒ congo red
- ⇒ methylviolet
- ⇒ yellow-green dichroism in polarising light

* electron microscopy:

⇒ fibrillar appearance

Amyloidosis - systemic

1) AL (primary) amyloidosis

- ⇒ associated with B-cell tumorous proliferations
 - myeloma
- ➡ light chains Ig
- deposits: cardiovascular system, kidney, GIT, skin, tongue, peripheral nerve

2) AA (reactive, secondary) amyloidosis

- ➡ associated with with chronic inflammation
 - rheumatoid arthritis
 - osteomyelitis
 - bronchiectasis

AA amyloid derived from SAA (serum associated amyloid) plasmatic acute phase reactant protein
deposits: kidney, liver, spleen, lymph nodes, adrenal glands, intestine

Amyloidosis - systemic

3) AH amyloidosis

- ⇒ long-term haemodialysis
- ⇒ β2-microglobulin

4) hereditary amyloidosis

Amyloidosis - localised

1) senile amyloid

- ⇒ aorta, myocardium
- ➡ cerebral (Alzheimer's disease, old people)

2) tumor-associated amyloid

⇒ in peptide hormones producing tumors (medullary thyroid carcinoma)

(secondary) amyloidosis - liver

(secondary) amyloidosis - liver

- 2 Kupffer cells
- 3 amyloid masses in perisinusoidal spaces
- 4 atrophic trabeculae of hepatocytes

(secondary) amyloidosis – liver congo red staining

Gout (arthritis uratica)

* excessive amounts of uric acid accumulated in tissues

- ⇒ primary
 - 90%, enzyme defects

⇒ secondary

- overproduction of uric acid
- increased cell lysis due to lymphoma or leukemia
- decreased excretion of uric acid due to chronic renal diseases

urate crystals are stored in tissues:

- ⇒ acute arthritis
- ⇒ chronic arthritis
- gouty nephropathy

Gout (arthritis uratica)

× <u>Acute form</u>:

- ⇒ gouty arthritis
- ⇒ tophi formation (gouty pain in the big toe)

× Chronic form:

- chronic tophaceous arthritis
 - (recurrent episodes of inflammation)
- gouty nephropathy
 - urate deposition in the medullar interstitium, with surrounding granulomatous reaction, intratubular urate precipitions, renal calculi

Disorders of lipid metabolism

× lipomatosis

- → excess amount of fat tissue
- ⇒ usually replacing atrophic functional tissue (pancreas, lymph node, kidney hilus, etc.)

Iipidoses – storage disease

- ⇒inborn hereditary diseases
- ⇒ usually single-gene enzymatic defect, blockage of metabolic chains
- accumulation of semi-products (sphingolipids) in macrophages (liver, spleen), nervous tissue
- × steatosis

Disorders of lipid metabolism

steatosis (fatty change)

- abnormal cytoplasmic accumulation of normal lipids (triglycerides, cholesterol) in form of droplets
- ⇒ Liver, myocardium, skeletal muscle, neutrophils, etc.

× gross:

⇒ yellowish, greasy

✗ micro:

⇒ wash-out during embedding in paraphine (empty vacuoles)

⇒ frozen sections – oil red, Sudan

Disorders of lipid metabolism

intracellular steatosis:

- ⇒ excessive fat intake
 - insufficient metabolism in normal cell
- ⇒ pathological cell metabolism
 - hypoxia
 - toxins,
 - infections
 - starvation, etc.

× extracellular steatosis:

⇒ deposition in intercellular substance, commonly via macrophages (atherosclerosis)

Fatty liver disease - steatosis

× gross:

⇒ enlarged, paler, in extreme cases yellow, softer consistency

× micro:

⇒ small or confluent droplets in cytoplasm

causes:

- ⇒ alcohol
- ⇒ other toxins (drugs, organic substances)
- ⇒ diabetes mellitus + metabolic syndrom
- ⇒ excessive fat intake
- ⇒ infection (hepatitis C, ...)
- ⇒ hypoxia
Fatty liver disease - steatosis

Fatty liver disease - steatosis

Fatty liver disease - macrovesicular steatosis

Fatty liver disease- microvesicular steatosis, <u>oil red (frozen section)</u>

1 – Hepatocytes filled with small vacuoles

Disorders of sacharid metabolism

- s glycogenosis (hereditary, AR)
- intracellular glycogen deposits
 - ⇒ in tumors (renal cell carcinoma)

× diabetes mellitus

- ➡ primary impaired glucose metabolism glucose intolerance, secondary. lipids + proteins, water and electrolytes homeostasis
- ➡ heterogennous group of diseases, multifactorial
- ⇒ relative or absolute insufficiency of insulin, causing hyperglycaemia

Diabetes mellitus

insulin dependent (IDDM – type I):

- ⇒ juvenile onset diabetes (usually manifests before age of 20 years)
- ⇒ insulin dependent
- ⇒ insufficient insulin production
- ⇒ genetic predisposition, viral and autoimmune factors

non-insulin-dependent (NIDDM – type II):

- Þ mature age
- ➡ connected with metabolic syndrom
- \Rightarrow relative insulin insufficiency (\downarrow receptors)

secondary diabetes mellitus

- ⇒ chronic pancreatitis
- ⇒ haemochromatosis
- ⇒ hyperglycaemic hormones

Diabetes mellitus

complications:

- ⇒ microangiopathy,
- ➡ neuropathy
- ➡ retinopathy
- ⇒ accelerated AS
- ⇒ hypertension
- ⇒ immunodeficiency (susceptibility to pyogenic bacteria, fungi)
- ⇒ diabetic nephropathy

Diabetic nephropathy

× clinically:

- ⇒ proteinuria
- ⇒ nephrotic syndrome
- ⇒ chronic renal failure

x morphology:

- ⇒ glomerulosclerosis
- ⇒ hyalinizing arteriolar sclerosis
- ➡ tubulointerstitial lesions

Diabetes mellitus and kidneys

nonenzymatic glycosylation of proteins:

accumulation of irreversible glycosylation products in BM of vessel walls, metabolic defect –> increased collagen synthesis, hemodynamic changes

* diabetic microangiopathy:

- ⇒ in kidney (glomerulosclerosis)
- ⇒ retina (diabetic retinopathy).
- diffuse thickening of capillary BM leads to ischemic changes, simultaneously increased plasmatic proteins permeability

Diabetic glomerulosclerosis

* diffuse glomerulosclerosis

➡ GBM thickening, increase in mesangial matrix

nodular glomerulosclerosis (Kimmelstiel-Wilson)

- *⇒* after 10-15 yrs
- ⇒ PAS+ nodular acellular material deposits at the tips of capillary loops
- ⇒ leads to chronic renal insufficiency

Diabetic glomerulosclerosis

Glycogenosis – liver

Glycogenosis - liver PAS+ staining - hepatocytes with glycogen deposits

Renal cell carcinoma

Calcification

x dystrophic

⇒ depositions of calcium in formerly altered tissues, in:

- necrosis
- dystrophy
- cell injury

× metastatic

- ⇒ affects lungs, gastric mucosa, kidneys, artery walls
- \Rightarrow caused by:
 - hypercalcemia
 - parathyroid hormone excess
 - chronic renal diseases

visualization: von Kossa silver nitrate staining (black colour)

Dystrophic calcification arterial wall with atheromatous plaque

- 4 endotelial fragments
- 5 intima 6 media 7 adventitia

Lithiasis (stones, calculi)

- formation or presence of stony concretions, as calculi, in the body
- the most important risk factors:

abnormal excess of the mineral
local conditions – inflammation, slower fluid flow rate
changes in pH

Iocations: gallbladder, renal system (kidney, ureter, urinary bladder, urethra), salivary glands/ducts, pancreas

x etiology:

- ➡ calcium oxalate
- ⇒ uric acid
- ➡ bile
- ⇒ pigments

Lithiasis (stones, calculi)

complications:

- ⇒ irritation of nearby tissues, causing pain, swelling, and inflammation.
- obstruction of an opening or duct, interfering with normal flow -> >
- ⇒ predisposition to infection !

medical conditions caused by stones:

- gallstones (cholelithiasis)
 - ⇒ acute cholecystitis -> ascending cholangitis
 - ⇒ pancreatitis
- kidney stones (nephrolithiasis)
 - ⇒ hydronephrosis
 - pyelonephrosis
 - urinary bladder stones (urolithiasis)

PIGMENTATION

× pigments - naturally colored substances

- autogenous: melanin, lipofuscin
- haematogenous: haematoidin, haemosiderin, haematin
- *⇒ exogenous*
 - carbon based dust
 - ink
 - metal

autogenous pigments

× MELANIN

- ⇒ brown / black pigment
- ⇒ melanin is the primary determinant of skin color
- ⇒ IHC: S-100, HMB-45, Melan A
- +: lentigo and naevi
 - malignant melanoma
 - Addison's disease
 - neurofibromatosis
- -: albinism
 - vitiligo

× LIPOFUSCIN

- ⇒ one of the aging or "wear-and-tear" pigments
- finely granular yellow-brown pigment granules (liver, myocardium)

vitiligo

vitiligo

Compound pigmented (melanocytic) nevus

1 - nests of melanocytes in the junction area

2 - nests of melanocytes in the dermis

Melanin (malignant melanoma)

Lipofuscin - cardiomyocytes

Hematogenous pigments

× Hemosiderin

- ⇒ granular brown pigment
- ⇒ IC i EC
- ⇒ local hemosiderosis ← most often result from hemorrhage into tissue
- \Rightarrow systemic hemosiderosis \leftarrow may result from hemorrhage, ...

hemosiderosis (without organ or tissue damage !!!) X haemochromatosis

HAEMOCHROMATOSIS

- serious disorder in which the presence of excess iron (as hemosiderin), is associated with a risk of progresion to cirrhosis
- primary (genetic) haemochromatosis
 - ⇒ excessive intestinal absorption of iron -> Fe (iron) overload -> haemosiderin accumulation in liver, spleen, pancreas, skin (bronze diabetes) → liver cirrhosis
 - secondary haemochromatosis
 - ⇒ repeated transfusions, alcohol + iron pots

HAEMOSIDEROSIS - Perls

Hematogenous pigments – pulmonary siderophages

Hematogenous pigments – pulmonary siderophages (Peris reaction) – granules of hemosiderin stains blue

Hematogenous pigments – bilirubin, cholestasis

× BILIRUBIN

⇒ breakdown product of haem moiety of haemoglobin

CHOLESTASIS :

- disturbance/stop of normal bile flow from the liver to the duodenum
- conjugated icterus
- ⇒ biliary obstruction
 - lithiasis, tumors incl. pancreatic, inflammation, congenital disorders atresia
- ⇒ hepatocyte excretory dysfunction
 - viral hepatitis, toxins, drugs, etc.
- ⇒ inborn excretory defect
 - Dubin- Johnson syndrome
- GROSS : brownish green color of liver
- * MICRO: hepatocanalicular cholestasis, perivenous localisation, reactive canalicular hyperplasia

Hepatocellular carcinoma - cholestasis

Bile retencion in pseudoglandular formations
Bile pigment in the cytoplasm of the hepatocyte

Exogenous pigments

anthracosis simplex

- black pigmentation in the respiratory tract, without peripheral fibrous reaction

amalgam pigmentation

- gingiva, mucous membranes, tongue; no inflammation!

tattoo

Exogenous pigments - tattoos (stable, inert pigment in dermis)

Pneumoconioses

* dusts:

- ⇒ inorganic (mineral)
- ➡ organic

variable reaction changes:

- ⇒ inert
- *⇒ fibrous*
- ⇒ allergic
- *⇒*neoplastic

)

Coal-workers pneumoconiosis (CWP)

1) Antracosis

- → only presence of coal dust in the lung
- → not associated with disability

2) Antracosilicosis (stages depends on amount of inhaled silica)

- ➡ macular CWP
 - focal aggregates of dust laden macrophages in and around respiratory bronchioles, arterioles

➡ nodular CWP

small nodules < 10mm in diameter, no significant scarring

➡ progresive massive fibrosis

large, irregular nodules with scarring, greater than 10mm,
Silicosis

* chronic progressive pneumoconiosis

* parts of silica -> terminal respiratory units -> ingestion by alveolar macrohpages -> toxic to macrophages -> focal necrosis -> fibrosis -> pulmonary hypertension -> cor pulmonale

× gross:

⇒ small nodules in upper lobes, later confluent nodes and scars, reactive emphysema

× micro:

⇒ silikotic nodule - concentric layers of hyalinised fibrotic tissue, commonly with anthracosis

× RTG – 3 stages:

- ➡ reticular fibrosis
- ➡ nodules
- ➡ diffuse fibrosis

Silicotic nodule - lung

Silicotic nodule- lung

Silicosis - confluent nodes, scarring of lung tissue

Asbestosis

* asbestos fibres (carcinogenic !!!)

Iater encrusted with hemosiderin to form asbestos bodies

× symptoms:

- ➡ cough
- ➡ dyspnoe
- > progression to:
 - ➡ progresive massive fibrosis
 - ➡ mesothelioma
 - ➡ lung carcinoma

asbestosis asbestos fibres (bodies) in lung tissue

extrinsic alergic alveolitis (hypersensitivity pneumonitis)

- * farmer's lung = most typical example
- inhalation of fungus present in poorly stored, mouldy hay
 -> hypersensitivity reaction -> pneumonitis -> can leads to pulmonary fibrosis
- other types: cotton fibres, bird faeces, …