Central European Institute of Technology
BRNO | CZECH REPUBLIC

Introduction to Bioinformatics (LF:DSIB01)

Week 2 : Algorithm Basics

Basics of Algorithms

- Definition of an algorithm
- Pseudocode Notation
- Exercise: The Coin Change Problem
- Brute force, Iterative, Recursive
- Big-O notation

What is an algorithm

- A sequence of instructions one must perform to solve a well formulated problem
- A step-by-step method of solving a problem
- A set of instructions designed to perform a specific task

Sequence of instructions Step-by-step method Set of instructions	Solve Perform	Well formulated problem Specific task

MaKePumpkinPie

$1 \frac{1}{2}$ cups canned or cooked pumpkin
1 cup brown sugar, firmly packed
$\frac{1}{2}$ teaspoon salt
2 teaspoons cinnamon
1 teaspoon ginger
2 tablespoons molasses
3 eggs, slightly beaten
12 ounce can of evaporated milk
1 unbaked pie crust
Combine pumpkin, sugar, salt, ginger, cinnamon, and molasses. Add eggs and milk and mix thoroughly. Pour into unbaked pie crust and bake in hot oven (425 degrees Fahrenheit) for 40 to 45 minutes, or until knife inserted
 comes out clean.

Pseudocode Notation

MAKEPUMPKINPIE(pumpkin, sugar, salt, spices, eggs, milk, crust)
1 PreheatOven(425)
2 filling \leftarrow MIXFILLING (pumpkin, sugar, salt, spices,eggs, milk)
3 pie \leftarrow ASSEMBLE(crust, filling)
4 while knife inserted does not come out clean
5 BAKE(pie)
6 output "Pumpkin pie is complete"
7 return pie

Pseudocode Notation

Assignment

Format: $\quad a \leftarrow b$

Effect: \quad Sets the variable a to the value b.
Example: $b \leftarrow 2$
$a \leftarrow b$
Result: The value of a is 2

Pseudocode Notation

Conditional

Format: if A is true
B
else
C
Effect: If statement A is true, executes instructions \mathbf{B}, otherwise executes instructions C. Sometimes we will omit "else C," in which case this will either execute \mathbf{B} or not, depending on whether A is true.

Example: $\operatorname{MAx}(a, b)$
1 if $a<b$
2 return b
3 else
4 return a

Pseudocode Notation

for loops

Format: \quad for $i \leftarrow a$ to b
B

Effect: \quad Sets i to a and executes instructions \mathbf{B}. Sets i to $a+1$ and executes instructions B again. Repeats for $i=a+2, a+3, \ldots, b-1, b$.

Example: SumIntegers(n)
1 sum $\leftarrow 0$
2 for $i \leftarrow 1$ to n
3 sum \leftarrow sum $+i$
4 return sum

Pseudocode Notation

while loops

Format: while A is true
B
Effect: Checks the condition A. If it is true, then executes instructions \mathbf{B}. Checks A again; if it's true, it executes \mathbf{B} again. Repeats until A is not true.

Example: AddUntil(b)
$1 i \leftarrow 1$
2 total $\leftarrow i$
3 while total $\leq b$
$4 \quad i \leftarrow i+1$
$5 \quad$ total \leftarrow total $+i$
6 return i

Pseudocode Notation

Array access

Format: $\quad a_{i}$

Effect: The i th number of array $\mathbf{a}=\left(a_{1}, \ldots a_{i}, \ldots a_{n}\right)$. For example, if $\mathbf{F}=(1,1,2,3,5,8,13)$, then $F_{3}=2$, and $F_{4}=3$.

Example: Fibonacci(n)
$1 F_{1} \leftarrow 1$
$2 F_{2} \leftarrow 1$
3 for $i \leftarrow 3$ to n
$4 \quad F_{i} \leftarrow F_{i-1}+F_{i-2}$
5 return F_{n}

Pseudocode vs Computer Code

If you were to build a machine that follows these instructions, you would need to make it specific to a particular kitchen and be tirelessly explicit in all the steps (e.g., how many times and how hard to stir the filling, with what kind of spoon, in what kind of bowl, etc.)

This is exactly the difference between pseudocode (the abstract sequence of steps to solve a well-formulated computational problem) and computer code (a set of detailed instructions that one particular computer will be able to perform).

Pseudocode Exercise: Coin Change (Euro coins)

Convert an amount of money into the fewest number of coins
Input: Amount of money (M)
Output: the smallest number of 50c (a), 20c (b), 10c (c), 5c (d), 2c (e) and 1c (f) such that $50 a+20 b+10 c+5 d+2 e+1 f=M$

1 while $M>0$
$2 \quad c \leftarrow$ Largest coin that is smaller than (or equal to) M Give coin with denomination c to customer $M \leftarrow M-c$

Try: $M=60 c ; M=55 c ; M=40 c$

Pseudocode Exercise: Coin Change (Generalised)

Input: An amount of money M, and an array of d denominations $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{d}\right)$, in decreasing order of value $\left(c_{1}>c_{2}>\cdots>c_{d}\right)$.
Output: A list of d integers $i_{1}, i_{2}, \ldots, i_{d}$ such that $c_{1} i_{1}+c_{2} i_{2}+$ $\cdots+c_{d} i_{d}=M$, and $i_{1}+i_{2}+\cdots+i_{d}$ is as small as possible.

Pseudocode Exercise: Coin Change (US coins)

Input: An amount of money M, and an array of d denominations $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{d}\right)$, in decreasing order of value $\left(c_{1}>c_{2}>\cdots>c_{d}\right)$.
Output: A list of d integers $i_{1}, i_{2}, \ldots, i_{d}$ such that $c_{1} i_{1}+c_{2} i_{2}+$ $\cdots+c_{d} i_{d}=M$, and $i_{1}+i_{2}+\cdots+i_{d}$ is as small as possible.

Try

$M=40 ; c 1=25, c 2=10, c 3=5, c 4=1$

NB: Division = "floor"

Pseudocode Exercise: Coin Change (US coins)

Input: An amount of money M, and an array of d denominations $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{d}\right)$, in decreasing order of value $\left(c_{1}>c_{2}>\cdots>c_{d}\right)$.
Output: A list of d integers $i_{1}, i_{2}, \ldots, i_{d}$ such that $c_{1} i_{1}+c_{2} i_{2}+$ $\cdots+c_{d} i_{d}=M$, and $i_{1}+i_{2}+\cdots+i_{d}$ is as small as possible.

$\begin{aligned} & r \leftarrow M \\ & \text { for } k \leftarrow 1 \text { to } d \\ & \quad i_{k} \leftarrow r / c_{k} \\ & \quad r \leftarrow r-c_{k} \cdot i_{k} \\ & \text { return }\left(i_{1}, i_{2}, \ldots, i_{d}\right. \end{aligned}$	

NB: Division = "floor"

Pseudocode Exercise: Coin Change (US coins)

Input: An amount of money M, and an array of d denominations $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{d}\right)$, in decreasing order of value $\left(c_{1}>c_{2}>\cdots>c_{d}\right)$.
Output: A list of d integers $i_{1}, i_{2}, \ldots, i_{d}$ such that $c_{1} i_{1}+c_{2} i_{2}+$ $\cdots+c_{d} i_{d}=M$, and $i_{1}+i_{2}+\cdots+i_{d}$ is as small as possible.

Pseudocode Exercise: Coin Change

Input: An amount of money M, and an array of d denominations $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{d}\right)$, in decreasing order of value $\left(c_{1}>c_{2}>\cdots>c_{d}\right)$.
Output: A list of d integers $i_{1}, i_{2}, \ldots, i_{d}$ such that $c_{1} i_{1}+c_{2} i_{2}+$ $\cdots+c_{d} i_{d}=M$, and $i_{1}+i_{2}+\cdots+i_{d}$ is as small as possible.

Tries every combination Guaranteed to find optimal Slow

Input: An amount of money M, and an array of d denominations $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{d}\right)$, in decreasing order of value $\left(c_{1}>c_{2}>\cdots>c_{d}\right)$.

Brute Force Algorithm

Output: A list of d integers $i_{1}, i_{2}, \ldots, i_{d}$ such that $c_{1} i_{1}+c_{2} i_{2}+$ $\cdots+c_{d} i_{d}=M$, and $i_{1}+i_{2}+\cdots+i_{d}$ is as small as possible.

	dteForceCHange (M, \mathbf{c}, d)
	smallestNumberOfCoins $\leftarrow \infty$
	for each $\left(i_{1}, \ldots, i_{d}\right)$ from $(0, \ldots, 0)$ to $\left(M / c_{1}, \ldots, M / c_{d}\right)$
	valueOfCoins $\leftarrow \sum_{k=1}^{d} i_{k} c_{k}$
	if valueOfCoins $=M$
	numberOfCoins $\leftarrow \sum_{k=1}^{d} i_{k}$
	if numberOfCoins < smallestNumberOfCoins
	smallestNumberOfCoins \leftarrow numberOfCoins
	bestChange $\leftarrow\left(i_{1}, i_{2}, \ldots, i_{d}\right)$
	return (bestChange)

Recursive Algorithms

The Towers of Hanoi puzzle, introduced in 1883 by a French mathematician, consists of three pegs, which we label from left to right as 1,2 , and 3 , and a number of disks of decreasing radius, each with a hole in the center. The disks are initially stacked on the left peg (peg 1) so that smaller disks are on top of larger ones. The game is played by moving one disk at a time between pegs. You are only allowed to place smaller disks on top of larger ones, and any disk may go onto an empty peg. The puzzle is solved when all of the disks have been moved from peg 1 to peg 3 .


```
1 disc = 1 move
2 discs = 3 moves (1-2, 1-3, 2-3)
3 discs = 7 moves (1-3, 1-2, 3-2, 1-3, 2-1, 2-3,1-3)
```


Towers of Hanoi (3 disks)

7 moves (1-3, 1-2, 3-2, 1-3, 2-1, 2-3,1-3)

More generally, to move a stack of size \mathbf{n} from the left to the right peg, you first need to move a stack of size $\mathbf{n - 1}$ from the left to the middle peg, and then from the middle peg to the right peg once you have moved the nth disk to the right peg.

To move a stack of size n-1 from the middle to the right, you first need to move a stack of size $\mathbf{n - 2}$ from the middle to the left, then move the ($n-1$)th disk to the right, and then move the stack of $\mathrm{n}-2$ from the left to the right peg, and so on.

Towers of Hanoi: N disks

fromPeg	toPeg	unusedPeg
1	2	3
1	3	2
2	1	3
2	3	1
3	1	2
3	2	1

```
HANOITOWERS( \(n\), fromPeg,toPeg)
1 if \(n=1\)
2 output "Move disk from peg fromPeg to peg toPeg"
3 return
4 unusedPeg \(\leftarrow 6-\) fromPeg - toPeg
5
6
7
8 return
```

fromPeg	toPeg	unusedPeg
1	2	3
1	3	2
2	1	3
2	3	1
3	1	2
3	2	1

HANOITOWERS (n, fromPeg, toPeg)
1 if $n=1$
2 output "Move disk from peg fromPeg to peg toPeg"
3 return
4 unusedPeg $\leftarrow 6-$ fromPeg - toPeg
5 HANOITOWERS ($n-1$, fromPeg, unusedPeg)
6 output "Move disk from peg fromPeg to peg toPeg"
7 HANOITOWERS($n-1$, unusedPeg,toPeg)
8 return

HanoiTowers (n, fromPeg,toPeg)
if $n=1$
output "Move disk from peg fromPeg to peg toPeg" return
unusedPeg $\leftarrow 6-$ fromPeg - toPeg
HANOITOWERS ($n-1$, fromPeg, unusedPeg)
output "Move disk from peg fromPeg to peg toPeg"
HANOITOWERS $(n-1$, unusedPeg, toPeg)
return

HanoiTowers (n, fromPeg,toPeg)

Towers of Hanoi: 4 disks

 returnunusedPeg $\leftarrow 6-$ fromPeg - toPeg
output "Move disk from peg fromPeg to peg toPeg"

HANOITOWERS ($n-1$, fromPeg, unusedPeg)
output "Move disk from peg fromPeg to peg toPeg"
HANOITOWERS $(n-1$, unusedPeg, toPeg $)$
return

Iterative Algorithms - Fibonacci Sefies

1,1,sum of previous two,

Iterative Algorithms vs Recursive Algorithms

```
RECURSIVEFIBONACCI \((n)\)
    1 if \(n=1\) or \(n=2\)
    2 return 1
    3 else
\(4 \quad a \leftarrow\) RECURSIVEFIBONACCI \((n-1)\)
\(5 \quad b \leftarrow \operatorname{RECURSIVEFIBONACCI}(n-2)\)
6 return \(a+b\)
```

Recursive: Slow (exponential)

```
Fibonacci \((n)\)
\(1 \quad F_{1} \leftarrow 1\)
\(2 \quad F_{2} \leftarrow 1\)
3 for \(i \leftarrow 3\) to \(n\)
\(4 \quad F_{i} \leftarrow F_{i-1}+F_{i-2}\)
5 return \(F_{n}\)
```

Iterative: Fast (linear)

RECURSIVEFIBONACCI (n)

```
if }n=1\mathrm{ or }n=
    return 1
    else
        a\leftarrowRECURSIVEFIBONACCI (n-1)
        b\leftarrowRECURSIVEFIbONACCI}(n-2
        return }a+
```

Recursive: Slow (exponential)

Algorithms

- Brute force : Try Everything, slow but always correct
- Recursive : To Solve for n, first solve for n-1
- Iterative : Loop on something, can be faster

Fast vs Slow algorithms

- How many operations does an algorithm take as N increases?
- Is the relationship linear? Quadratic? Exponential?
- What is the upper limit of the running time of an algorithm as N increases?

Guess random number (up/down)

1ms / check
$\mathrm{N}=100$

SIMPLE
SEARCH
$1 \varnothing \phi_{\mathrm{ms}}$

BINARY SEARCH
7 ms

Simple search:
For i in 1 to N
If $\mathrm{i}==$ the number return i

Binary search:
Range-min = 1
Range-max $=\mathrm{N}$
While ()
$\mathrm{i}=$ middle number of range
if $i==$ the number; return I
elsif i < number; Range-max=i; elsif i > number; Range-min=i;

Guess random number (up/down)

	SIMPLE SEARCH	BINARY SEARCH
100 ELEMENTS	100 ms	$7_{\mathrm{ms}} \sim 15$ times faster
10,000 ELEMENTS		
$1,000,000,000$ ELEMENTS		

Guess random number (up/down)

	SIMPLE SEARCH	BINARY
SEARCH		

Guess random number (up/down)

Guess random number (up/down)

Common Big-Os

- O(logn), also known as log time. Example: Binary search.
- $O(n)$, also known as linear time. Example: Simple search.
- $O\left(n^{*} \log n\right)$. Example: A fast sorting algorithm, like quicksort.
- O(n2). Example: A slow sorting algorithm, like selection sort.
- O(n!). Example: A really slow algorithm, like the traveling salesperson.
"Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city and returns to the origin city?"

https://www.freecodecamp.org/news/big-o-notation-simply-explained-with-illustrations-and-video-87d5a71c0174/

A GUIDE TOTHE MEDICAL DIAGNOSTIC AND TREATMENT

 ALGORITIM USED BY IBM'S WATSON COMPUTER SYSTEM
Week 1 Summary

- I know what an algorithm is
- I can write pseudocode
- I understand
- Brute force
- Iterative
- Recursive
- Big-O = how slow

Thank you for your attention! 60 minutes lunch break.

Panos Alexiou

