
DSIB01 Autumn 2021

04 Alignment
Mgr. Eliška Chalupová

375973@mail.muni.cz

Practicals overview
● STAR

● Repetitive elements removal

● Reads alignment

● Deduplication

● SAM file format & samtools

Preliminary quality check
● Not necessary if you did one at the end of the last practicals

● Use loops when running the same command for multiple files

for file in /home/user/encode/*.fastq
 do
 fastqc -o /home/user/encode/fastqc/01 $file
 Done

● Use multiQC to compare multiple results

conda install -c bioconda multiqc

multiqc /home/user/fastqc/01 -o /home/user/multiqc/01

Technical tips
● Environment variables

○ There are no spaces when defining environment variables

○ Use ‘$’ sign to reference defined variables

○ You can manipulate them through ${READ1}

○ More information e.g. here

READ1=ENCFF708YAL echo $READ1 echo ${READ1#ENCFF}

READ2=ENCFF959XKN echo $READ2 echo ${READ2#ENCFF}

OUT_DIR=/home/user/output

● When specifying an output directory, first make sure it exists

○ Use option -p to create multiple nested directories at the same time

mkdir -p /home/user/output/star/repeats

https://securitronlinux.com/debian-testing/how-to-manipulate-environment-variables-with-the-bash-shell-on-linux/

Repositioning UMIs
● UMIs will be explained later in this practicals, for now we just need to do one step before alignment

● Check the length of UMIs in your fastq files and adjust the length (l=10) parameter accordingly

○ Use the head command head -n 4 /home/user/output/cutadapt/round2/$READ1.adapterTrim.fastq

● Run the following command for both fastq files to reposition UMIs

awk -v l=10 'BEGIN{OFS=FS=" "} substr($1, 1, 1) == "@" {print "@" substr($1, (l+3), 500) "_"

substr($1, 2, l) }; substr($1, 1, 1) != "@" {print}; '

/home/user/output/cutadapt/round2/$READ1.adapterTrim.fastq >

/home/user/output/umis/$READ1.adapterTrim.umi.fastq

Alignment
● There are multiple alignment tools available

● Each tool has many parameters with many options

● The choice of the tool and parameters is crucial

● We have to understand our data to make the right choices

● We have to understand the tool and its options

● E.g., if we do not allow any mismatches, it is not possible to detect SNPs. If we

allow too many mismatches, we get too many false SNPs and wrong alignments.

STAR
● Installation

conda activate Environment

conda install -c bioconda star

● Manual

https://physiology.med.cornell.edu/faculty/skrabanek/lab/angsd/lecture_notes/STARmanual.pdf

● Original paper at https://pubmed.ncbi.nlm.nih.gov/23104886/

https://physiology.med.cornell.edu/faculty/skrabanek/lab/angsd/lecture_notes/STARmanual.pdf
https://pubmed.ncbi.nlm.nih.gov/23104886/

STAR - Indexing
● First generate genome index, unless available, by running STAR in runMode ‘genomeGenerate’

● Genome files comprise binary genome sequence, suffix arrays, text chromosome names/lengths,

splice junctions coordinates, and transcripts/genes information. Most of these files use internal

STAR format and are not intended to be utilized by the end user.

● --sjdbGTFfile - Optional, STAR will extract splice junctions from the GTF file and use them to

improve accuracy of the mapping.

● --genomeSAindexNbases - For small genomes, this parameter must be scaled down, with a

typical value of min(14, log2(GenomeLength)/2 - 1). For example, for 1 megaBase genome, this is

equal to 9, for 100 kiloBase genome, this is equal to 7.

● --genomeChrBinNbits - If you are using a genome with a large number of references (>5,000

chromosomes/scaffolds), you may need to lower this parameter to reduce RAM consumption.

For example, for 3 gigaBase genome with 100,000 chromosomes/scaffolds, this is equal to 15.

STAR - Alignment
● STAR (Spliced Transcripts Alignment to a Reference) is an aligner designed to specifically

address many of the challenges of RNA data mapping by accounting for spliced alignments

● Outperforms other aligners in mapping speed, but it is memory intensive

● The algorithm achieves this highly efficient mapping by performing a two-step process: 1) Seed

searching, and 2) Clustering, stitching, and scoring

Images taken from: https://hbctraining.github.io/Intro-to-rnaseq-hpc-O2/lessons/03_alignment.html

STAR - Alignment
● Note that “STAR’s default parameters are optimized for mammalian genomes. Other

species may require significant modifications of some parameters; in particular, the

maximum and minimum intron sizes have to be reduced for organisms with smaller

introns”.

● --outFilterMultimapNmax - Default filtering allows maximum of 10 multiple alignments

for a read. If it is exceeded, no alignment is outputted.

● The logs and other output files are created by STAR at the current working directory by

default - make sure to be at the right place cd /home/user/output/star/repeats or use option

--outFileNamePrefix /home/user/output/star/repeats/

STAR - ENCODE options
● --outFilterType BySJout - reduces the number of “spurious” junctions

● --outFilterMultimapNmax 20 - max number of multiple alignments allowed for a read: if exceeded, the read is

considered unmapped

● --alignSJoverhangMin 8 - minimum overhang for unannotated junctions

● --alignSJDBoverhangMin 1 - minimum overhang for annotated junctions

● --outFilterMismatchNmax 999 - maximum number of mismatches per pair, large number switches off this filter

● --outFilterMismatchNoverReadLmax 0.04 - max number of mismatches per pair relative to read length: for

2x100b, max number of mismatches is 0.04*200=8 for the paired read

● --alignIntronMin 20 - minimum intron length

● --outSAMunmapped Within - output unmapped reads within the main SAM file

● --alignEndsType EndToEnd - In eCLIP the cross linking position should be at the beginning of the second read. If

we would enable soft-clipping, we would add potential bases with low quality at the end of our second reads that

would blur our cross linking position.

Repetitive elements - RepBase
● “A substantial portion of eukaryotic genomes is composed of multiple DNA copies referred to as

“repetitive DNA”, which can be divided into two major groups” - tandem repeats and transposable

(selfish) elements

● Over 40% of the human genome is still composed of recognizable interspersed repeats of which some are

over 200 million years old

Read more at Repbase Update, a database of eukaryotic repetitive elements

● Recommendation from eCLIP-seq Processing Pipeline - “Removing repetitive elements helps control for

spurious artifacts from rRNA (and other) repetitive reads”

● Case against filtering out the repetitive elements - “By focusing on only a fraction of the genome, only a

fraction of discoveries can be made.”

https://sci-hub.se/https://www.karger.com/Article/Abstract/84979
https://mobilednajournal.biomedcentral.com/articles/10.1186/s13100-018-0120-9

Repetitive elements
1. Generate index - apply the option for small genomes

STAR \
--runMode genomeGenerate \
--genomeSAindexNbases 5 \
--runThreadN 2 \
--genomeDir /home/user/ref/repeats \
--genomeFastaFiles /home/user/ref/repeats/RepBase_hs_shared_11272018.fasta

Repetitive elements
2. Align the reads

STAR --runThreadN 2 \

--genomeDir /home/user/ref/repeats \

--readFilesIn home/user/output/cutadapt/round2/ ${READ1%.fastq}.adapterTrim.fastq \

home/user/output/cutadapt/round2/ ${READ1%.fastq}.adapterTrim.fastq \ \

-outSAMunmapped Within \

--outSAMattributes All \

--outStd BAM_Unsorted \

--outSAMtype BAM SortedByCoordinate \

--outFilterType BySJout \

--outReadsUnmapped Fastx \

--outFileNamePrefix /home/user/output/star/repeats/ \

--alignEndsType EndToEnd

Repetitive elements
● Reads corresponding to the repetitive elements got aligned

● However, we are interested in those, that did not align

● Further on, we will be working with the unmapped files Unmapped.out.mate1 and

Unmapped.out.mate2 - those are the reads with the repetitive elements removed

● We can give them more meaningful names, e.g.

cd /home/user/output/star/repeats/

mv Unmapped.out.mate1 $READ1.rm_rep.fastq

mv Unmapped.out.mate2 $READ2.rm_rep.fastq

Reads alignment
● We will align against the newest human genome assembly - Hg38

○ We will use only chromosome 1 for the purposes of this practicals

○ Using only chromosome 1 we need to lower the parameter --genomeSAindexNbases to 12

○ You can get all the genome files e.g. at USCS https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/

● First, we need to index the genome again

○ For the purposes of the practicals, the prepared indexed files were sent to your email

STAR --runMode genomeGenerate \

--runThreadN 2 \

--genomeSAindexNbases 12 \

--genomeDir /home/user/ref/chr1 \

--genomeFastaFiles /home/user/ref/chr1/chr1.fa

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/

Reads alignment
STAR --runThreadN 2 \

--genomeDir /home/user/ref/chr1 \

--readFilesIn /home/user/output/star/repeats/$READ1.rm_rep.fastq \

/home/user/output/star/repeats/$READ2.rm_rep.fastq \

--outSAMunmapped Within \

--outFilterMultimapNmax 20 \

--alignSJoverhangMin 8 \

--alignSJDBoverhangMin 1 \

--outFilterMismatchNmax 99 \

--outFilterMismatchNoverReadLmax 0.04 \

--alignIntronMin 20 \

--outSAMattributes All \

--outSAMtype BAM SortedByCoordinate \

--outFilterType BySJout \

--outReadsUnmapped Fastx \

--outFileNamePrefix /home/user/output/star/chr1/ \

--alignEndsType EndToEnd

STAR - Output
● Aligned.out.sam / Aligned.out.bam / Aligned.sortedByCoord.out.bam - alignments in standard

SAM/BAM format

● Log.out - main log file with a lot of detailed information about the run

● Log.progress.out - reports job progress statistics, such as the number of processed reads

● Log.final.out - summary mapping statistics, useful for quality control

● SJ.out.tab - contains high confidence collapsed splice junctions in tab-delimited format

● Unmapped.out.mate1 & Unmapped.out.mate1 - unmapped reads in original fastq format (thanks

to option --outReadsUnmapped set to Fastx)

Images taken from: https://hbctraining.github.io/Intro-to-rnaseq-hpc-O2/lessons/03_alignment.html

Deduplication
● PCR duplicates are reads that are made from the same original cDNA molecule

via PCR.

● A common practice to eliminate PCR duplicates is to remove all but one read of

identical sequences.

● For example, a large number of PCR duplicates containing an

amplification-induced error may cause a variant calling algorithm to misidentify

the error as a true variant.

● However, several studies have shown that retaining PCR- and Illumina clustering

duplicates does not cause significant artifacts as long as the library complexity is

sufficient (e.g. here).

● PCR duplicates are thus mostly a problem for very low input or for extremely

deep RNA-sequencing projects.

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1097-3

Deduplication - UMIs
● UMIs (Unique Molecular Identifiers) should be used to prevent the removal of

natural duplicates.

● UMIs, or molecular barcodes, are short sequences used to uniquely tag each

molecule in a sample library.

● UMIs are added before PCR amplification, and can be used to reduce errors and

quantitative bias introduced by the amplification.

Deduplication - UMI-tools
● UMI-tools contains tools for dealing with Unique Molecular Identifiers (UMIs)/Random

Molecular Tags (RMTs) and single cell RNA-Seq cell barcodes.

● Installation

conda create -n umi python=3.7 # UMI-tools does not work with the latest python version

conda activate umi

conda install -c bioconda -c conda-forge umi_tools

● Usage

--dedup - Use this when you want to remove the PCR duplicates

--group - This is useful when you want to manually interrogate the PCR duplicates or perform

bespoke downstream processing such as generating consensus sequences

--count - Use this when you want to obtain a matrix with unique molecules per gene, per cell, for

scRNA-Seq

https://umi-tools.readthedocs.io/en/latest/index.html#

Deduplication
● UMI-tools require the input BAM file to be indexed

● To do that, we will use samtools

samtools index /home/user/output/star/hg38_chr1/Aligned.sortedByCoord.out.bam

● Now we do the deduplication

umi_tools dedup --stdin=/home/user/output/star/hg38_chr1/Aligned.sortedByCoord.out.bam \
--log=/home/user/output/dedup/chr1_dedup.log \
> /home/user/output/dedup/chr1_dedup.bam

● We can check the results of the deduplication in the log file

● The deduplicated file (chr1_dedup.bam) will be used for the following steps

Sequence Alignment Map (SAM)
● It is a TAB-delimited text format consisting of a header and an alignment section

● The alignment section contains the information for each sequence about

where/how it aligns to the reference genome

● Each alignment line has 11 mandatory fields for essential alignment information

such as mapping position, and variable number of optional fields for flexible or

aligner specific information.

● BAM - binary version, compressed, not human-readable, required by some tools

for downstream analysis

● See more information at https://genome.sph.umich.edu/wiki/SAM or

http://samtools.github.io/hts-specs/SAMv1.pdf

https://genome.sph.umich.edu/wiki/SAM
http://samtools.github.io/hts-specs/SAMv1.pdf

Sequence Alignment Map (SAM)
● Each alignment has:

○ query name - used to group/identify alignments that are together, like paired alignments or a

read that appears in multiple alignments

○ a bitwise set of information describing the alignment, FLAG. Provides the following

information:

■ are there multiple fragments?

■ are all fragments properly aligned?

■ is this fragment unmapped?

■ is the next fragment unmapped?

■ is this query the reverse strand?

■ is the next fragment the reverse strand?

■ is this the 1st fragment?

■ is this the last fragment?

■ is this a secondary alignment?

■ did this read fail quality controls?

■ is this read a PCR or optical duplicate?

Samtools
● Set of utilities that manipulate alignments in the SAM, BAM, and CRAM formats

● Converts between the formats, does sorting, merging and indexing, and can retrieve

reads in any regions swiftly

● Documentation http://www.htslib.org/doc/samtools.html

● Installation conda install -c bioconda samtools

● index - index a sorted SAM or BAM file for fast random access

● flagstat - calculates statistics based primarily on the bit flags (see the flags description here)

● view - with no options or regions specified, prints all alignments in the specified input

alignment file to the stdout in the SAM format. Use of region specifications requires a

coordinate-sorted and indexed input file.

http://www.htslib.org/doc/samtools.html
http://samtools.github.io/hts-specs/SAMv1.pdf

Finalization
● We can look how at the first alignment as an example of SAM format

samtools view /home/user/output/dedup/chr1_dedup.bam | head -n 1

● Index the deduplicated file

samtools index /home/user/output/dedup/chr1_dedup.bam

● Calculate statistics

samtools flagstat /home/user/output/dedup/chr1_dedup.bam

● You can save them to the file using ‘>’ sign

samtools flagstat /home/user/output/dedup/chr1_dedup.bam \

> /home/user/output/dedup/chr1_dedup.bam.flagstat

Project task
1. Map both read files to the repetitive elements

2. Use the unmapped files to map them to the chromosome 1 of human genome

3. Perform deduplication of the mapped reads

4. Perform quality check of aligned deduplicated bam file

5. Get statistics about the deduplicated file using samtools

● Mark and discuss all the results in your project report

● Push the Alignment.sh script to Your GitHub repository

