

Mgr. Ondřej Vaculík 437307@mail.muni.cz

DSIB01 Autumn 2021 05 Motif Detection

Overview

- Peak calling brief overview
- Motif representation in biology
 - PPM
 - PWM
 - sequence logos
- Tools
 - Bedops
 - Bedtools
 - The MEME Suite
 - MEME-ChIP
 - Tomtom
- Demo on real dataset
- Homework Individual work

Clip-seq analysis - peak calling

- a statistical procedure, which uses coverage properties of CLIP and Input samples to find regions which are enriched due to protein binding
- requires mapped reads, and outputs a set of regions, which represent the putative binding locations. Each region is usually associated with a significance score which is an indicator of enrichment
- many different tools for peak calling available:
 - iCount
 - Paraclu
 - PureCLIP
 - Piranha

Sequence motifs

- a nucleotide or amino-acid sequence pattern that is widespread and usually assumed to be related to biological function of the macromolecule
- short, recurring patterns in DNA/RNA that are presumed to have a biological function. Often they indicate sequence-specific binding sites for proteins such as nucleases, transcription factors, RNA-binding proteins. Others are involved in important processes at the RNA level, including ribosome binding, mRNA processing (splicing, editing, polyadenylation) and transcription termination.

Sequence motif representation - PPMs

- a position probability matrix
- in general:
 - there's one row for each symbol of the alphabet and one column for each position in the pattern
- in PPM each number is a probability of nucleotide occurrence in given position (sum of each column is 1)

$$M = egin{array}{c} A & egin{bmatrix} 0.3 & 0.6 & 0.1 & 0.0 & 0.0 & 0.6 & 0.7 & 0.2 & 0.1 \ 0.2 & 0.2 & 0.1 & 0.0 & 0.0 & 0.2 & 0.1 & 0.1 & 0.2 \ 0.1 & 0.1 & 0.7 & 1.0 & 0.0 & 0.1 & 0.1 & 0.5 & 0.1 \ T & egin{bmatrix} 0.1 & 0.1 & 0.7 & 1.0 & 0.0 & 0.1 & 0.1 & 0.5 & 0.1 \ 0.4 & 0.1 & 0.1 & 0.0 & 1.0 & 0.1 & 0.1 & 0.2 & 0.6 \end{bmatrix}$$

Sequence motif representation - PWMs

- a position weight matrix
 - also known as a position-specific weight matrix (PSWM) or position-specific scoring matrix (PSSM)
 - the most commonly used
- the elements in PWMs are calculated as log likelihoods
- PWMs are often derived from a set of aligned sequences that are thought to be functionally related and have become an important part of many software tools for computational motif discovery.

$$M = egin{array}{c} A & egin{array}{c} 0.26 & 1.26 & -1.32 & -\infty & -\infty & 1.26 & 1.49 & -0.32 & -1.32 \ -0.32 & -0.32 & -1.32 & -\infty & -\infty & -0.32 & -1.32 & -1.32 & -0.32 \ -1.32 & -1.32 & -1.32 & 1.02 & -1.32 & -1.32 & -1.32 \ T & egin{array}{c} 0.68 & -1.32 & -1.32 & -\infty & 2.0 & -1.32 & -1.32 & -1.32 \ 0.68 & -1.32 & -1.32 & -\infty & 2.0 & -1.32 & -1.32 & -0.32 \end{array}
ight|.$$

Sequence motif representation - Sequence logos

- Graphical representation of PWMs
 - the bigger letter the higher chance for the nucleotide to appear in the position

weblogo.berkeley.edu

Tools - BEDOPS + bedtools

• BEDOPS:

- open-source command-line toolkit that performs efficient and scalable Boolean and other set operations, statistical calculations, archiving, conversion and other management of genomic data of arbitrary scale
- <u>https://bedops.readthedocs.io/en/latest/</u>
- functions for today: <u>sort-bed</u>, <u>bedextract</u>

bedtools:

- a swiss-army knife of tools for a wide-range of genomics analysis tasks
- allows one to intersect, merge, count, complement, and shuffle genomic intervals from multiple files and in many different formats (.bed, .bam, .gff, ...)
- <u>https://bedtools.readthedocs.io/en/latest/</u>
- function for today: getfasta

Tools - The MEME Suite

• **The MEME Suite** is a powerful, integrated set of web-based tools for studying sequence motifs in proteins, DNA and RNA.

MEME-ChIP

- web service designed to analyze ChIP-seq 'peak regions' short genomic regions surrounding declared ChIP-seq 'peaks'
- works also with CLIP-seq 'peak regions'
- Given a set of genomic regions, it performs:
 - ab initio motif discovery
 - motif enrichment analysis
 - motif visualization
 - binding affinity analysis
 - motif identification
- <u>https://meme-suite.org/meme/tools/meme-chip</u>

Tools - The MEME Suite

 The MEME Suite is a powerful, integrated set of web-based tools for studying sequence motifs in proteins, DNA and RNA.

Tomtom

- web service that allows the user to compare motifs discovered by the suite, by other tools, or taken from the literature to all of the motifs in a selected database of motifs
- aligns each input motif with each motif in the selected database and reports the most similar pairs, along with estimates of the statistical significance of each match
- https://meme-suite.org/meme/tools/tomtom

- 1. Download the dataset: bed file with peaks, choose isogenic replicate 1,2 https://www.encodeproject.org/experiments/ENCSR570WLM/
- 2. Download the <u>chromosome 1 fasta reference</u>
- 3. Unzip the files

ENCODE Data	Encyclopedia Materials & Methods H	lelp Search		ENCODE Data I	ncyclopedia	a Materia	als & Metho	ods Help	Search	1		Q Si	gn in / Cr	eate account
Experiments / eCLIP / Homo sapiens / HepG2				1 1			Homo sapie	ens HepG2 cell li	ne	ENCBS362A	SG ENG	AB494QSS	EN	CLB238JYQ
Experiment summary for ENCSR570WLM				2 1			Homo sapie	ens HepG2 cell li	ne	ENCBS308Z	PA ENC	AB494QSS	EN	CLB436FYS
				Files										
doi:10.17989/ENCSR570WLM				Geno	me browser	Ass	ociation graph	Fil	e details		Include	e deprec	ated files 🗆	
				Filter files	Filter files GRCh38 VUCSC Visualize Downlo							Download		
Summary		Attribution		Clear all filters					Displaying	10 of 10 files				
Status:	• released	Lab:	Gene Yeo, U	File format	+ La	ab custon	n hg19 (ENCAN522	PDL) pro	ocessed d	ata (5 Files	s) 📥 🗖 a	rchived	
Accav		Award:	U54HG0070(bed narrowPeak 6 bigBed Lab custom GRCh38 (ENCAN767VIB) processed data (5 Files) 📩 💽 released										
Assay.		Drojecti	ENCODE	narrowPeak 4	Accession		Default 🕇	File type	Output	Isogenic	Genome	Date	File 🛊	File status
Target:	QKI	Project.	ENCODE	Output type					type	replicate	assembly	added	size	
Biosample summary:	<i>Homo sapiens</i> HepG2	External resources:	RBPImage:Q GEO:GSE918	peaks 10 minus strand	ENCFF81	5XNW 🛈 📥	*	bed narrowPeak	peaks	2	GRCh38	2016- 11-30	2.05 MB	• released
Biosample Type:	cell line	References:	PMID:32252 PMCID:PMC7	signal of unique 4 reads plus strand	ENCFF59	4IKL 🛈 📥	*	bigBed narrowPeak	peaks	2	GRCh38	2016- 12-03	3.29 MB	• released
Replication type:	isogenic		doi:10.1038/ doi:10.1038/	signal of unique 4 reads alignments 4	ENCFF70	40CI 🕄 📩		bed narrowPeak	peaks	1, 2	GRCh38	2018- 12-03	214 kB	• released
Description:	eCLIP experiment on HepG2 against QKI	Aliasasi	gono voo:47	reads 4	ENCFF55	1IJQ 🕄 📩		bed	peaks	1	GRCh38	2016-	2.76	• released
Nucleic acid type:	RNA	Auases:	gene-yeo:47	Replicates				narrowPeak	•			11-30	MR	
Size range:	175-300	Date submitted:	March 22, 20		ENCFF98	4WOV 🛈 📩		bigBed narrowPeak	peaks	1	GRCh38	2016- 12-03	5.32 MB	• released
Fragmentation	see document	Date released:	April 26, 201	2 4 1, 2 2										
methods:		Tags:												

- 4. Create and activate conda environment for today's practicals
 - Open the **terminal**

conda create --name practicals conda activate practicals

- 5. Installation of necessary packages:
 - if it turns out you're missing a channel for installing some of the tool, you can add them by following cmd:

conda config --add channels NAME

conda install bedops

conda install -c bioconda bedtools

File Edit View Search Terminal Help (base) odk@odk:~\$ conda activate practicals (practicals) odk@odk:~\$

- 6. Sort intervals in downloaded file and then extract chromosome 1 positions
 - sort-bed PATH/TO/peaks.bed > PATH/TO/OUTPUT/sorted peaks.bed
- 7. Unify intervals length to 100 nt

• awk -F '\t' '{X=50; mid=(int(\$2)+int(\$3))/2;printf("%s\t%d\t%d\t%s\n",\$1,(mid-

X<0?0:mid-X),mid+X, \$4);}' PATH/TO/chr1 peaks.bed >

PATH/TO/OUTPUT/chr1 peaks extended.bed

chr5	132827787	132827811	QKI_HepG2_IDR	chr1	632859	632909	+	chr1	632834	632934	+
chr5	131548752	131548805	OKI HepG2 IDR	chr1	634491	634541	+	chr1	634466	634566	+
chr2	241250904	241250940	OKI HepG2 IDR	chr1	1047070	1047120	+	chr1	1047045	1047145	+
chr4	99202668	99202713	OKT HepG2 TDR	chr1	1047217	1047267	+	chr1	1047192	1047292	+
chr4	00202713	00202762	OKT HepC2 TDP	chr1	1338918	1338968	-	chr1	1338893	1338993	•
ch at t	10505526	10505674	QK1_HepG2_TDK	chr1	1613960	1614010	-	chr1	1613935	1614035	-
Chr11	18505520	18505074	QKI_HEPG2_IDR	chr1	2404761	2404811	-	chr1	2404736	2404836	-
chr8	118027137	118027182	QKI_HepG2_IDR	chr1	2405613	2405663		chr1	2405588	2405688	-
chr2	158492773	158492841	QKI_HepG2_IDR	chr1	5890334	5808384		chr1	5890309	5890409	*
chr2	64644932	64645037	OKI HepG2 IDR	chr1	6212772	6212022		chr1	6212747	6212847	+
chr11	96158990	96159068	OKT HepG2 TDR	chri	6212772	6212022	+	chr1	6212813	6212913	+
che 20	0753003 0754001	OKT HODGE TOP	1000	chrl	0212838	0212888	+	chr1	6457561	6457661	+
Chi 20	8755905 8754001	QKI_HepG2_IDR	1000 +	chr1	6457586	6457636	+	chr1	6790853	6790953	+
chro	2115465 2115530	QKI_HepGZ_IDR	1000 -	chr1	6790878	6790928	+	chr1	7708913	7709013	+
chr13	108220327	108220437	QKI_HepG2_IDR	chr1	7708938	7708988	+	chr1	7752582	7752682	+
chr3	60693996	60694106	QKI_HepG2_IDR	chr1	7752607	7752657	+	chr1	7755794	7755894	+
chr3	149966520	149966623	OKI HepG2 IDR	chr1	7755819	7755869	+	chr1	7755880	7755980	+
			<pre><</pre>	chr1	7755905	7755955	+	chr1	8016479	8016579	-
				chr1	8016504	8016554		chr1	8016533	8016633	\sim
						222222		-1	0010500	0045500	

8. Extract sequences from a reference FASTA file for each of the intervals

bedtools getfasta -s -fi PATH/TO/chr1.fasta -bed PATH/TO/chr1_peaks_extended.bed -fo PATH/TO/QKI chr1.fa

>chr1:632834-632934()	
GCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCCTGTACGCCCTTTTCCTAACACTCACAACAAAACTAACT	
>chr1:634466-634566()	
TAGCCATGTGATTTCACTTCCACTCCACAACCCTCCTCATACTAGGCCTACTAACCAACACACAC	
>chr1:1047045-1047145()	
GGGGGGTTATGGTCTTGGGACTCGGCCCCCTCAAACATGTGCGTGC	
>chr1:1047192-1047292()	
CCACTAACCTCATGACCATCTGACTAACATCCACCTTCCCTTGCACCCTTGTGGCTTGCTGCGGGGCCTGTGCCTGGGGCCAGCCTGGATGCCAGGCAGA	
>chr1:1338893-1338993()	
ACTGGGCTGACACCCCACCCTGCAGACCAGGAAGTAATGAGAACAGGGCAGGCCCCTTCCCCTCCCCGCATGCCCCACCCGAGAGCGCAGGCTGTTAGTC	
>chr1:1613935-1614035()	
TTTGAGCCTTTGGAAAACGGTATCGTTAGGCATGTGGCGAAAACGTTGGGGTACTTGAAAAAAGGCTGGCCATGGGTTAGTAAAAAAGCTAGATATGTGA	
>chr1:2404736-2404836()	
ATGTGGCACACGCCCTCGAGGCATTTTAACACTGCGCTTCAGGAAATCTCAAGTTCCATCTTGTGTTAGTAACGTACCCACATTTTGCTGGAGTTAGTT	
>chr1:2405588-2405688()	
AAAGCGCAGCCAGGGACAGCTTTCTGTTCTCTCCCAGGGTGGCTAGGTTAGTATCTTACATGACAAAAAACTGAGAGTGTTCTAACTTCTGTGCAAGCAA	
>chr1:5890309-5890409()	
CCCTTCATACAATGGAGAAGGCTTGGGAAGAATTCCAGGGAAGACGAGTGAAAGAATCCATGGATTTAGGTTTTAGTATACAAGGAGAATGGAAAAGGAC	
>chr1:6212747-6212847()	
GCTGCCGAGTGAACCCTCTGTCCCTGAGCTAACCCACATACTAGCAGAGGAGGAAGTCAGAGTCGGCCACTAACCAGATGCAAATCCCCACACTCTTCCC	
>chr1:6212813-6212913()	
CCACTAACCAGATGCAAATCCCCACACTCTTCCCCTTAGCGCTTGACCGTGCCTCCCAGCTGCTAACTGGCCTCAAATGATGCATGTGAGGTCAGGATTC	
>chr1:6457561-6457661()	
CCCTGCCTCCTATTAACCTGGCCTTTTCTACCCTTCAGTTAACCTAACCCCACTATCAATCA	
>chr1:6790853-6790953()	
>chr1:7708913-7709013()	
TATCAACTACTACAAAAATTAATCATTCTCCCATTTTTTCAGCTTTCGTGTTTCACCTGACTTTCACCACCCCATACATCATGTTTCACTCTCCAGCTGGC	

- 9. Open the MEME Suite web 10. Open the **MEME-ChIP** tool
- 11. Pick appropriate setup

12. Run the analysis

Version 5.4.1

MEME Suite 5.4.1

Motif Discovery

DREME (deprecated)

Motif Enrichment

Motif Comparison

►Gene Regulation

► Guides & Tutorials

►Download & Install

► Alternate Servers

► Authors & Citing

MEME-ChIP 11:34 X MEME-ChIP

12:43 🗙

11:34 🗙

11:32 🗙

9:45 🗙

9:45 🗙

9:33 🗙

9:32 🗙

9:32 🗙

9:32 🗙

9:03 🗙

8:42 ×

8:37 X

8:31 🗙

8:27 X

8:25 X 8:15 X

8:07 X

7:31 🗙

16:04 X

15:25 🗙

15:12 🗙

Version 5.4.1

vRecent Jobs

MEME-ChIP MEME-ChIP

MEME-ChIP

MEME-ChIP

MEME-ChIP

MEME-ChIP

MEME-ChIP

MEME-ChIP

MEME-ChIP

MEME-ChIP

MEME-ChIP

MEME-ChIP

MEME-ChIP

MEME-ChIP

MEME-ChIP

MEME-ChIP

středa 3. listopadu

↔ Previous version 5.3.3

Tomtom

Tomtom

Tomtom

Clear All

►Sample Outputs ► File Format

Reference

▶ Databases

►Help

Tomtom

► Motif Scanning

MEME

STREME XSTREME MEME-Chip

GLAM2

MoMo

Toroton

▶Manual

MEME-ChIP performs comprehensive motif analysis (including motif discovery) on sequences where the motif sites tend to be centrally located, such as ChIP-seg peaks (sample output from sequences). The input sequences should be centered on a 100 character region expected to contain motifs. and each sequence should ideally be around 500 letters long. See this Manual for more information

Data Submission Form Perform motif discovery, motif enrichment analysis and clustering on large nucleotide datasets. Select the motif discovery and enrichment mode 🕄 ■ Classic mode ○ Discriminative mode ○ Differential Enrichment mode

Select the sequence alphabet

Use sequences with a standard alphabet or specify a custom alphabet. DNA, RNA or Protein
 Custom Choose File No file chosen

V RNA

[Reset]

Powered by Opa

Input the primary sequences

Enter the (equal-length) nucleotide sequences to be analyzed. Upload sequences

Choose File OKI.fa DNA ?

Convert DNA sequences to RNA? 300

Input job details

A Helensel entire		
Universal options		

STREME options CentriMo options

What is the threshold for a motif match (bits)? Score \geq 5 What is the maximum allowed width of an enriched region? \Box Region width ≤ 200 What is the E-value threshold for an enriched region? E-value \leq 10 Should CentriMo find non-central enriched regions?

Run CentriMo in local mode to find non-central enriched regions. Should CentriMo output include the IDs of sequences with a motif match?

Include a list of matching sequence IDs for each enriched motif.

Start Search

Note: if the combined form inputs exceed 80MB the job will be rejected.

Please send comments and questions to: meme-suite@uw.edu

Clear Input

Homework

- Re-do the motif analysis on the artificial dataset
- 4 different datasets (1 dataset per student) + 1 bonus dataset
 - will be sent by email
- Task:
 - download the data
 - extend the intervals to 100 nt
 - extract sequences for the intervals
 - use MEME-ChIP to analyse motifs in dataset
 - try to identify domain/protein/protein family

(look also at the CISBP database and pfam database - by clicking through the results)

Bonus task 1:

- Download the Motifs in MEME Text Format, upload the file to Tomtom tool, choose the CISBP-RNA Single Species RNA (Homo Sapiens) motif database and look at the results of the motif comparison tool
- Bonus task 2:
 - Repeat the analysis on the bonus (voluntary) dataset
- We'll discuss the results on the practicals 3. 12. 2021

####