Antihistamines

1 Department of Pharmacology

Histamine

- autacoid (local hormone)
- endogenous amine (hydrophilic)
- in tissues is formed from histidine

Location: in granules in mast cells, basophiles (histaminocytes) \rightarrow bound to heparan sulphate and acidic protein

in almost all tissues, highest levels in lungs, GIT, skin

Main roles in the body:

neurotransmitter – CNS

mediator of allergic/inflammatory reactions – mast cells, basophilles

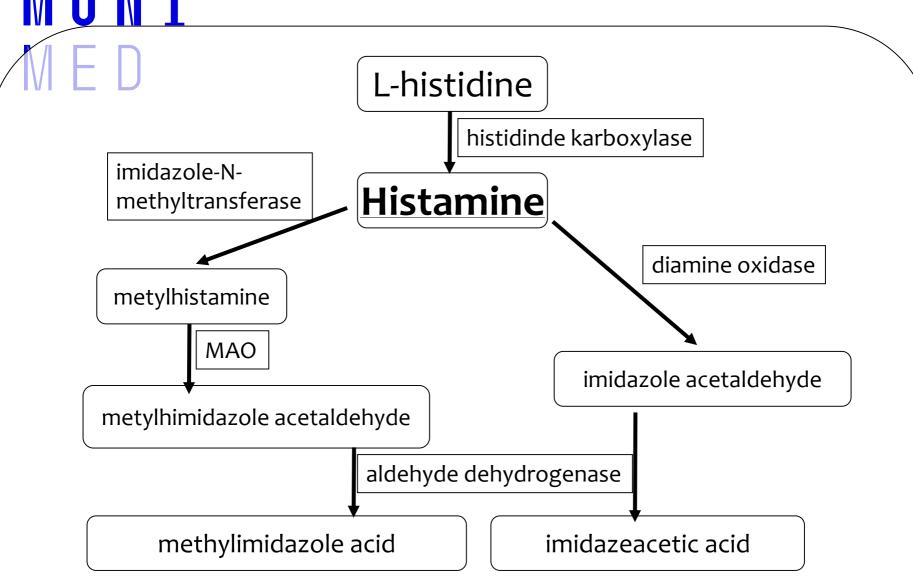
regulation of gastric acid release (↑) - **stomach**

MED

Histamine

MUNI MED

is released from mast cells granules by exocytosis (activation of phospholipase C a \uparrow Ca²⁺)


Stimuli:

imunological: antigen + IgE

physical, chemical or mechanical cell damage

drugs

Histamine metabolism

MUNIHistamine receptorsMED

4 subtypes $(H_1 - H_4)$

G protein-coupled receptors

their stimulation results in increase in cellular concentration of Ca²⁺ ions

Location:

endothel, smooth muscles (vessels, bronchi, uterus, GIT), peripheral neuron ending, CNS

Effects:

smooth muscle contraction (bronchi, uterus, ileum)

vasodilatation of minor vessels (\downarrow BP, reddening of skin)

increase in vessel permeability (swelling)

irritation of peripheral neuron endings (itching, even pain)

excitation of CNS

$\begin{array}{c|c} \textbf{M} \textbf{U} \textbf{N} \textbf{I} & \textbf{H}_2 \text{ receptors} \\ \textbf{M} \textbf{E} \textbf{D} \\ \textbf{postsynaptic, } \textbf{G}_s \text{-protein} \uparrow \textbf{activity of adenylate cyclase} \rightarrow \\ \uparrow_c \textbf{AMP} \end{array}$

Location:

stomach mucosa, heart, vessels, immune system

Effect:

in stomach: gastric acid, pepsine, intrinsic factor secretion

slower and longer vasodilatation

+ inotropic, + chronotropic effect

$\begin{array}{ccc} \textbf{M} & \textbf{U} & \textbf{N} & \textbf{I} \\ \textbf{M} & \textbf{E} & \textbf{D} \\ & & & & \\ presynaptic, G_i \ protein \rightarrow inhibition \ of \ N-type \ Ca^{2+} \ channels \\ & & \rightarrow \downarrow \ cellular \ Ca^{2+} \end{array}$

feedback inhibition of histamine release

heteroreceptors, \downarrow release of other neurotransmitters

Location:

mainly in CNS (but in PNS tissues as well)

Effects:

sedation negative chronotropic effect bronchoconstriction

H₄ receptors

possibly isoform of H_3

Location:

eosinophiles, basophiles, bone marrow, thymus, intestine, spleen

Effects:

influencing activity of immune system important for chemotaxis

MUNIHow to antagonize effectsMED

Treat the symptom

vasoconstrictiors, sedatives, antacides, tocolytics etc.

Treat the cause

inhibition of synthesis (glucocorticoids)

inhibition of release (cromoglycate, nedokromil, β_2 -SM,

glucocorticoids)

receptor antagonism:

- non-specifically, indirectly (epinephrine)

- specifically, directly (H1, H2, H3 - antihistaminines)

MUNIHistamine in clinical practiseMED

limited use (ineffective when given orally) diagnostics in allergology

Skin Allergy Test

histamine analogue \rightarrow **betahistine**

MUNI Lewis reaction MUNI MED typical response to intradermal histamine administration:

skin reddening (vasodilatation of arterioles)

wheal (capillary permeability)

flare (redness in the surrounding area due to arteriolar dilatation mediated by axon reflex)

used in allergy testing – positive control

it is used to evaluate the potential antiallergic effect of H1 antihistamines

12

Allergy

has a high incidence, 10-30% (and growing)

genetic factors

various theories about its origin

Mechanism of alergic reaction:

early contact with allergen allergen binds to IgE antibody degranulation of cells containing histamine activation of phospholipase C → mobilization of intracellular Ca2+ → mediators are released: HIS, PG, LT, PAF, cytokines

Allergy treatment MUNI **Allergy treatment** MED always as an addition to taking environmental control

H₁- antihistamines

measures and avoiding allergen

glucocorticoids

mast cells stabilizers

immunotherapy

epinephrine (anaphylactic shock)

H U N I H1 antihistamines H1 antihistamines H1 Antihistamines H1 Antihistamine H1 Antihittamine H1 Anti

high selectivity to H_1 rp. \rightarrow low affinity to H_2 rp. 3 generations

AE:

antimuskaric, antiserotonergic a antiadrenergic effects of older drugs of this group (sedation, fluctuating blood presure,...)

block of Na⁺ channels → locally anaesthetic and antipruritic effect

H₁ antihistamines H₁ antihistamines pharmacokinetics Dosage forms: oral, topical, parenteral (i.m., infusion)

easy and quickly absorbed from GIT

distributed evenly in the body

metabolized in liver (some in form of prodrug)

excreted in urine, stool

drugs of <u>I. generation</u> cross the blood-brain barrier \rightarrow central effects (sedation)

cross the placenta and are distributed into milk!

H₁ antihistamines - I. generation relatively old drugs $M \in D$ in general lower selectivity to H₁ receptors they cross the **blood-brain barrier** effect lasts approx. 4 - 6 h rather common adverse effects **dimetinden** (Fenistil[®]) promethazine **bisulepin** (Dithiaden[®]) **moxastine** – for motion sickness (Kinedryl[®]) **cyproheptadine** – treatment of serotonin syndrome 17 ketotifen

$\begin{array}{ccc} M & U & N & I \\ M & E & D \end{array} \qquad \begin{array}{c} H_1 \text{ antihistamines} \\ AE \text{ of I. generation} \end{array}$

sedative, even hypnotic eff.– driving, heavy mashinery operation (!)

paradoxical reaction (children, elderly) = excitation
(sleeplessness, nervousness, tachycardia, tremor, ...)
indigestion (nausea, vomiting, diarrhea x constipation)

skin symptoms \rightarrow phototoxicity

anticholinergic effects

increas in appetite (antiserotoninergic effect)

18

ortostatic hypotension (weak block of α-adrenergic rp.)

MUNIH1 antihistaminesMFDII. and III. generation

- low distribution to CNS minimal sedative effect
- better properties higher selectivity towards rp., less AE
 - effect lasts for 12 24 hours, given 1 2 times a day

II. generation

- cetirizine
- loratadine
- fexofenadine
- azelastine

19

levocabastine

III. generation

- levocetirizine
- desloratadine
- bilastine
- rupatadine

MUNINovel H1 antihistaminesMEDIII. generation

20

bilastine

high selectivity towards H₁-receptors, antiinflammatory properties

not metabolized by liver or intestinal wall, low potential for drug-drug interaction

rupatadine

long-term effect

dual effect (H₁ antagonist + blocks PAF receptors)

MUNI H₁ antihistamines AE of II. generation

arrythmogenic→ QT interval prolongation (some drugs even withdrawn)

possible sedation when overdosed (cetirizine)

Interactions:

are metabolised by CYP3A4 → be cautious of inhibitors of this isoform (macrolide ATB, azole antifungals, verapamil, grapefruit juice...)

H₁ antihistamines Indications I

treatment of symptoms of **allergic diseases** - allergic rhinitis - urticaria, drug and food allergy

add-on treatment of anafylactic reactions

pruritus of various ethiology (e.g. itching in allergic and non-allergic dermatitis + insect bites)

tinitus, Meniére's disease

H₁ antihistamines Indications II

migraine

nausea a vomiting movement sickness (moxastine, embramine) vertigo

prophylactic premedication before some drugs (e.g. monoclonal antibodies)

sleeplessness, when hypnotics are not tolerated

anxiety (hydroxyzine → mild anxiolytic effect)

H₁ antihistamines Contraindications

- alcohol dependency - hypersensitiveness to that substance - serious hypotension - simultaneous administration of sedative drugs (I.generation) - activities which require full attention (I.generation) - patients with history of arrythmias (II. generation)

H₃ antihistamines

MUNI MED

betahistine

MoA: H₃ antagonist, H₁ agonist analogue of histamine

improves microcirculation of the inner ear by vasodilatating capillaries

indications: tinitus, vertigo, Menière's disease