
PHARMACOLOGY OF ANAESTHETICS

Katarina Zadrazilova Kamil Hudacek

Faculty of medicine, Masaryk University
University Hospital Brno

AIMS OF ANAESTHESIA

Triad of anaesthesia

- Analgesics IV/regional anaesthesia or analgesia
- Anaesthetic agents to produce unconsciousness
- Neuromuscular blocking agents for muscle relaxation

Why unconscious patient require analgesia?

Overview

- Intravenous and inhalational anaesthetics
- Analgesics simple, opioids
- Muscle relaxants
- Decurarization

INTRAVENOUS ANAESTETICS

Stages of anaesthetics

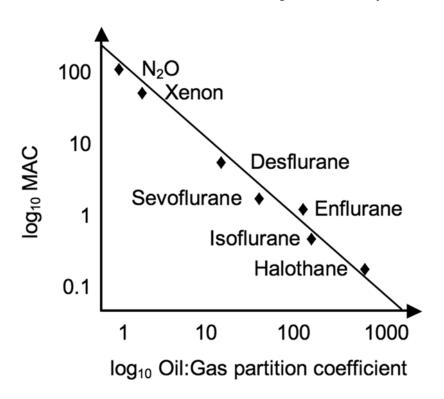
- Induction putting asleep
- **Maintenance** keeping the patient asleep
- **Reversal** waking up the patient

- Onset of anaesthesia within one arm brain circulation time – 30 sec
- Effect site \implies brain
 - Propofol
 - Thiopentale
 - Etomidate
 - Ketamine
 - BZD

General anaesthetic-how do they work

TASK – EXPLAIN

- 1. Loss of conscious awareness
- 2. Loss of response to noxious stimuli
- 3. Reversibility


Anatomical site of action

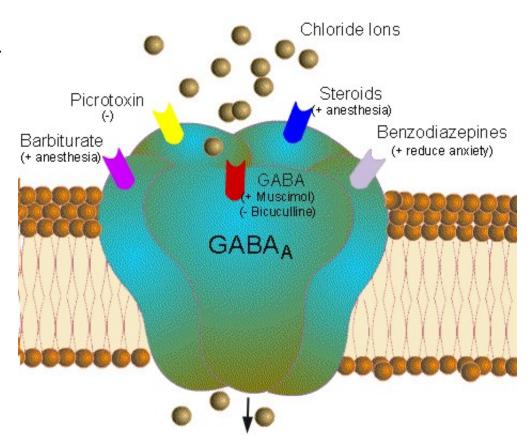
- Brain: thalamus, cortex
- Spinal cord

GA - how do they work

Molecular theories

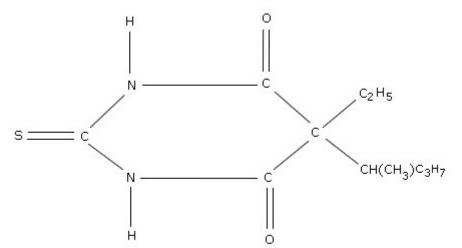
Meyer-Overton hypothesis

Linear correlation between the lipid solubility and potency


Molecular theories

- Critical volume hypothesis
 - Disruption of the function of ionic channels
- Perturbation theory
 - Disruption of annular lipids assoc. with ionic channels
- Receptors
 - Inhibitory GABA A, glycin enhance
 - Excitatory nAch, NMDA inhibit

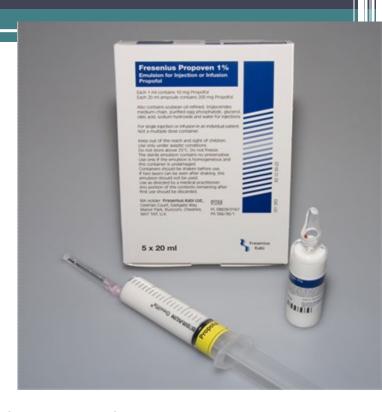
GA - how do they work


GABA_A receptor

- ionotropic receptor

Thiopentale

- Barbiturate
- **Dose** 3-7 mg/kg
- **Effects**: hypnosis, atiepileptic, antanalgesic
- Side effects
 - CVS: myocardiac depression, ↓CO
 - Reduction in MV, apnea

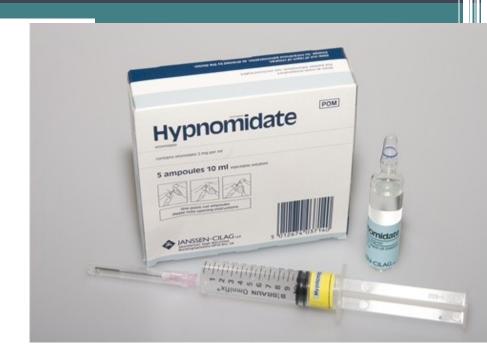


Thiopentale

- Problems with use
 - Extremely painfull and limbtreatening when given intra-arterially
 - Hypersensitivity reactions 1: 15 000
- Contraindications
 - Porphyria

Propofol

- Phenolic derivative
- **Dose** 1- 2.5 mg/kg
- Effects: hypnosis
- Side effects
 - CVS: myocardiac depression, ↓SVR, ↓CO
 - Respiratory depression
 - Hypersensitivity 1: 100 000

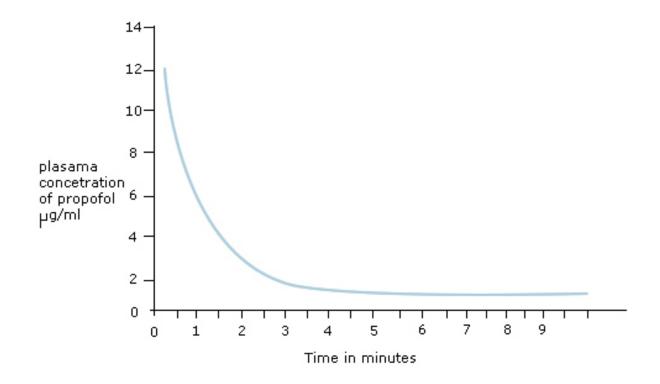

Propofol

- Other effects
 - Pain on induction
 - Nausea and vomiting less likely
 - Better for LMA placement then thiopentale
- Relative contraindications
 - Children under 3

Etomidate

- Ester
- **Dose** 0.3 mg/kg
- Effects : hypnosis
- Side effects
 - CVS: very little effect on HR, CO, SVR
 - Minimal respiratory depression

Etomidate


- Problems with use
 - Pain on injection
 - Nausea and vomiting
 - Adrenocortical suppression
 - Hypersensitivity reaction 1: 75 000
- Relative Contraindications
 - Porphyria

Ketamine

- Phencyclidine derivative
- CV effects THR, BP, CO, O2 consumption
- RS ↑ RR, preserved laryngeal reflexes
- CNS dissociative anaesthesia, analgesia, amnesia
- Use analgesic in Emerg. Med

Pharmakokinetics

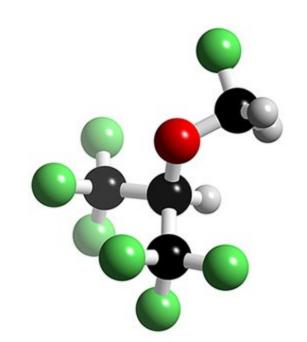
Recovery from propofol single bolus 5-10 min

Choice of induction agent

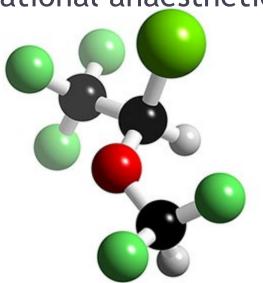
- 1. Are any agents absolutely contraindicated?
 - Hypersensitivity, porphyria
- 2. Are there any patient related factors?
 - CVS status
 - Epilepsy
- 3. Are there any drug related factors?
 - Egg allergy

Induction + maintenance

- **TIVA** (=Total Intravenous Anesthesia)


SUMMARY - IV anaesthetics

- Mechanism of action via receptors
- Used for anaesthesia and sedation
- Used for induction
 - thiopentale, propofol, etomidate
- Propofol used for maintenance as well
- Most of them cause CV and respiratory depression


INHALATIONAL ANAESTETICS = volatile anesthetics

Anaesthetic gases

- Isoflurane
- Sevoflurane
- Halothane
- Enflurane
- Desflurane

• N₂O – nitrous oxide

Anaesthetic gases

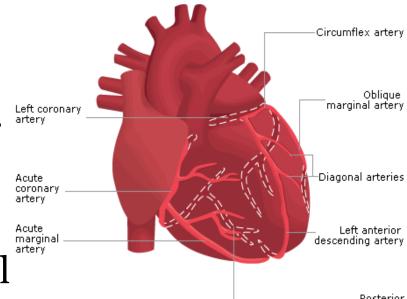
 Any agent that exists as a liquid at room temperature is a vapour

 Any agent that cannot be liquefied at room temperature is a gas

Anaesthetic 'gases' are administered via vaporizers

Potency

 MAC – that concentration required to prevent 50 % of patients moving when subjected to standart midline incision


Sevoflurane MAC 1.8 %

• Isoflurane MAC 1.17 %

Respiratory and cardiovascular effects

- All volatile anaesthetics cause ↓ MV and ↑RR
- Isoflurane is irritant vapour
- SVR, blood pressure falls,
 HR
- Isoflurane ? Coronary steel

Metabolism and toxicity

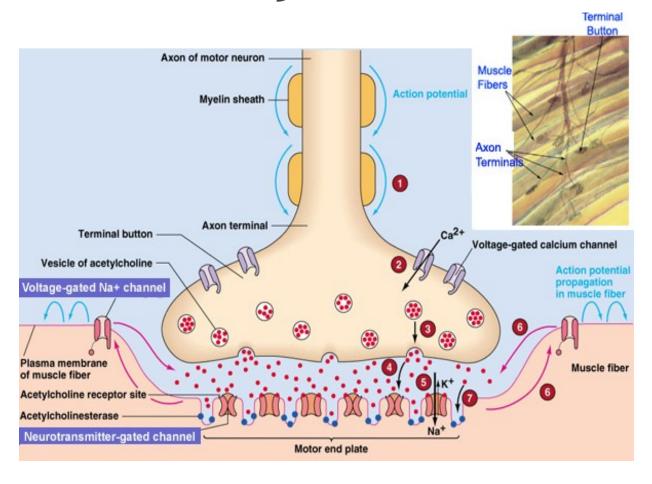
- Isoflurane (0.2 %) and Sevoflurane (3.5%) are metabolized by liver
- F⁻ ions are produced -? Renal impairment
- Iso and Sevo trigger malignant hyperthermia
- N2O
 - Megaloblastic anaemia
 - Teratogenic
 - PONV

SUMMARY - inhalational anaesthetics

- Mechanism of action via receptors
- Used for induction (sevoflurane)
- And maintenance of anaesthesia
- Commonly used : Sevoflurane, Isoflurane
- Dose dependent CV and respiratory depression
- All, but N2O trigger malignant hyperthermia

NEUROMUSCULAR BLOCKING AGENTS = NMBAs

- Exclusively used in anaesthesia and intensive care
- Two classes
 - Depolarizing
 - succinylcholine
 - Non depolarizing
 - Vecuronium, rocuronium aminosteroid
 - Atracurium, cisatracurium benzylisoquinolinium



Use of NMBAs

- Tracheal intubation
- Surgery where muscle relaxation is essential
- Mechanical ventilation

Neuromuscular junction

Mechanism of action

Depolarizing

- structurally related to Ach (=acetylcholine)
- first activating muscle fibres, then preventing further response
- short acting drugs

Non depolarizing

- compete with Ach at nicotinic receptor at the neuromuscular junction
- middle and long acting drugs

Choice for tracheal intubation

Elective surgery	Emergency surgery
Standart induction	Rapid sequence induction
Non depolarizing agent	Succinylcholine or rocuronium

Intubating doses

Succinylcholine	1 – 2 mg/kg AcBW
Rocuronium	0.6 - 1 mg/kg IBW
Atracurium	o.5 mg/kg IBW

To maintain paralysis

Non depolarizing muscle relaxants

Succinylcholine	No
Rocuronium	maintenance dose: 0.1 – 0.2 mg/kg
Atracurium	maintenance dose: 0.1 – 0.2 mg/kg

Succinylcholine pharmacokinetics

- Duration of action: $3 6 \min$ (full recovery over 10 min)
- Metabolism plasma cholinesterase
 - Cave: suxamethonium apnea

$$\begin{bmatrix} \text{CH}_3 & \text{O} & \text{CH}_3 \\ \text{CH}_3 & \text{N}^+\text{-CH}_2\text{CH}_2\text{O}-\text{C}-\text{C}-\text{CH}_2\text{CH}_2-\text{C}-\text{O}-\text{CH}_2\text{CH}_2-\text{N}^+-\text{CH}_3} \\ \text{CH}_3 & \text{CH}_3 \end{bmatrix}^{2\text{ CI}}$$

Succinylcholine - adverse effects

- Bradycardia
- Muscle pain 'sux' pain
- Transient raised pressure in eye, stomach and cranium
- Raise in potassium !!

Succinylcholine - contraindications

- Patient related contraindications
 - Malignant hyperpyrexia
 - Anaphylaxis to SCh
 - Succinycholine apnea / Pseudocholinesterase deficiency
- Clinical contraindications
 - Denervation injury / long term immobilized patient
 - Patient with burns
 - Penetrating eye injury

Non depolarizing muscle relaxants

- Choice of NMBs
 - Personal preference
 - Atracurium or cisatracurium better in renal or hepatic failure
 - Avoid atracurium in asthmatic patients –
 cisatracurium is drug of choice
 - Rocuronium (or vecuronium) could be reversed (by antidotum sugammadex)

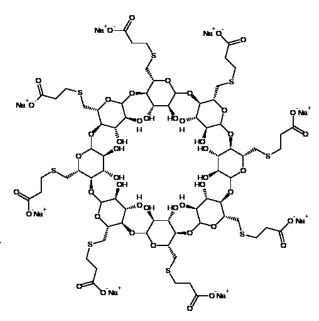
Comparison of Pharmacokinetics between nondepolarising neuromuscular blocking agents $^{[1]}$

Neuromuscular Blocking Agents	Dosing	Onset time	Duration	Pharmacokinetics, Precautions and Side Effects
Rocuronium	0.6mg/kg (2 x ED ₉₅) maintenance dose: 0.1mg/kg or infusion at a dose of 5- 12mcg/kg/minute	1.5-3 minutes	30-70 minutes	Fastest onset time, alternative to succinylcholine for rapid sequence intubation Volume of distribution of 0.3-0.7L/kg, excreted mainly through biliary route
Vecuronium	0.1mg/kg or 2 x ED ₉₅ for 3-4 minutes maintenance dose: 0.01mg/kg or an infusion at 1-2mcg/kg/min	3-4 minutes	25-50 minutes	Volume of distribution of 0.4 L/kg, Neuromuscular monitoring is required for patients with renal or hepatic disease that may have prolonged response to vecuroniu
Pancuronium	0.1mg/kg (1.5 x ED ₉₅) for 3-5 minutes maintenance dose: 0.02mg/kg	3-5 minutes	60-120 minutes	Rarely used due to high incidence of postoperative residual neuromuscular weakness and cause tachycardia due to direct sympathomimetic stimulation and blockage of cardiac muscarinic receptors. Volume of distribution of 0.2 to 0.3 L/kg, eliminated mostly through the renal route, with 20 percent biliary excretion, avoided in patients with renal and hepatic impairment
Atracurium	0.5 mg/kg, or 2 x ED95 for 3-5 minutes maintenance dose: 0.1mg/kg or an infusion rate at 10-20 mcg/kg/min	3-5 minutes	30-45 minutes	side effects: skin flushing, hypotension and tachycardia due to the increase in plasma histamine level Volume of distribution is 0.15L/kg, metabolism of Atracurium is independent of hepatic and renal function Metabolised by non-specific plasma esterase-mediated hydrolysis and a nonenzymatic, pH- and temperature-dependent degradation called Hofmann elimination
Cisastracurium	0.15-0.2 mg/kg or 3 x ED95 for 4-7 minutes maintenance dose: 0.01 mg/kg or an infusion at 1-3 mcg/kg/min guided by neuromuscular monitoring	4-7 minutes	35-50 minutes	Volume of distribution is 0.16 L/kg, metabolised through Hofmann elimination
Mivacurium	0.2 mg/kg, or 3 x ED ₉₅ for 3-4 minutes maintenance dose: 0.1 mg/kg or an infusion at 5 to 8 mcg/kg/min guided by neuromuscular monitoring	3-4 minutes	15-20 minutes	Volume of distribution of 0.2 L/kg, metabolized by butyrylcholinesterase and should not be used in patients with butyrylcholinesterase deficiency It can be reversed by neostigmine or edrophonium.

Brull, Sorin; Naguib, Mohamed. "Clinical use of neuromuscular blocking agents in anesthesia". UpToDate. Retrieved 20 April 2020.

Reversal

- Acetylcholine esterase inhibitor neostigmine
 - Increases concentration of Ach at NMJ
- Neostigmine acts at all sites where acetylcholine esterase is present including heart


What effect this might have and how this can be overcome?

Neostigmine

- Dose of neostigmine 0.05 mg/kg
- In > 50 kg man 2.5 mg
- Given with atropine 0.5 mg

Sugammadex (Bridion)


- medication for the reversal of neuromuscular blockade induced by rocuronium and vecuronium
- the first selective relaxant binding agent (SRBA)
- dose depends on time of use
 - $(16 4 2 \text{ mg kg}^{-1})$
- expensive

Peripheral nerve stimulator

- Check the depth of neuromuscular blockade
 - □ TOF, PTC..

 Check that blockade has been reversed fully (TOFr ≤ 0.9)

SUMMARY - muscle relaxants

- Mechanism of action via acetylcholine receptor
- Used to facilitate tracheal intubation, mechanical ventilation and surgery
- Depolarizing Succinylcholine
 - Lots of side effects
- Non depolarizing Rocuronium, Atracurium, ...
 - Minimal CV and respiratory effects

ANALGESICS

Analgesics

- paracetamol (=acetaminophen), metamizole
- Nonsteroidal anti-inflammatory drugs = NSAIDs
 - (aspirin, ibuprofen, naproxen, indomethacin, diclofenac, meloxicam,..)
- Opioids
- Local anaesthetics
- Antidepressants
- Anti-epileptics
- Ketamine
- Clonidine

Paracetamol = acetaminophen

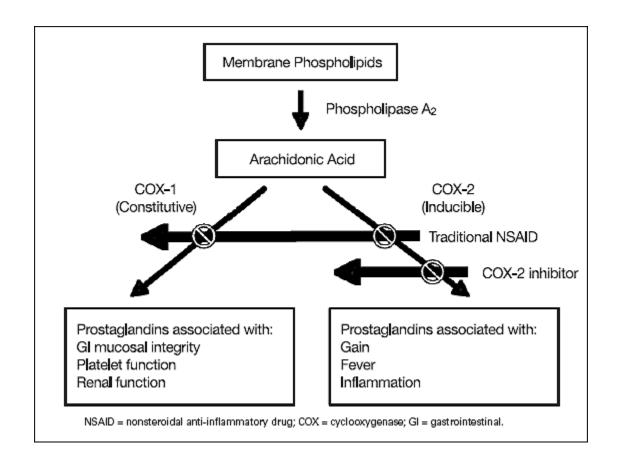
- classified as a mild analgesic
- does not have significant anti-inflammatory activity
- for severe pain, such as cancer pain and pain after surgery, in combination with opioid pain medication
- is generally safe at recommended doses
- max daily dose for an adult is **4** grams overdose results in a lengthy, painful illness, acute liver failure and death
- safe during pregnancy and when breas

NSAIDs - effects

- reduces pain
- decreases fever
- prevents blood clots
- decreases inflammation
 - in higher doses

 Antipyretic agents found in willow tree and led to development of acetylsalicylic acid

Charles Frédéric Gerhardt


Bayer company had named it "Aspirin"

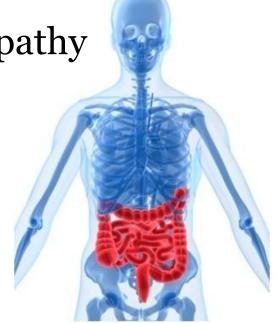
Acetylsalicylic acid (ASA) = Aspirin

- Anti-inflamatory agent in joint disease
- Cardiovascular unstable angina
- Antiplatelet drug prevention of stroke / aMI
- Radiation induced diarrhoea
- Alzheimer's disease

NSAIDs - mechanism of action

• Inhibition of cyclo-oxygenase enzymes (COX-1, COX-2)

NSAIDs - side effects


Gastric irritation

Renal dysfunction – analgesic nefropathy

Antiplatelet function

Hepatotoxicity

NSAID sensitive asthma

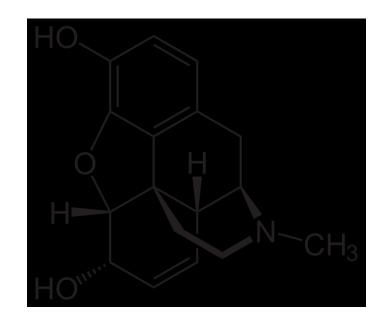
CAVE: drug interaction – warfarin, lithium

	Aspirin	Paracetamol	
Chemistry	Acetic acid	Paraaminophenol	
Mechanism of action	Inhibition of COX 1	? COX 3 inhib	
Metabolism	Estrases in gut wall, liver	Liver	
Toxicity	Hepatic/renal inpairment	GI upset	
	GI upset	Trombocytopenia	
	Rayes syndrome in kids	Liver necrosis	
Dose	300 – 900 mg every 6 h	1 g every 6 h	
Route of administration	orally	PO/PR/IV	

Other NSAIDs

- Ibuprofen the lowest risk of GI upset
- Indomethacin, Diclofenac mainly antiinflamatory effect

 Aspirin and NSAIDs are not contraindicated for regional anesthesia


SUMMARY - simple analgesics

- Paracetamol
- NSAIDs
- MOA inhibition of COX
- Renal, gastric, hepatic side effects
- Can trigger NSAID sensitive asthma

Opiods

MORPHEUS
- GREAK GOD OF DREAMS

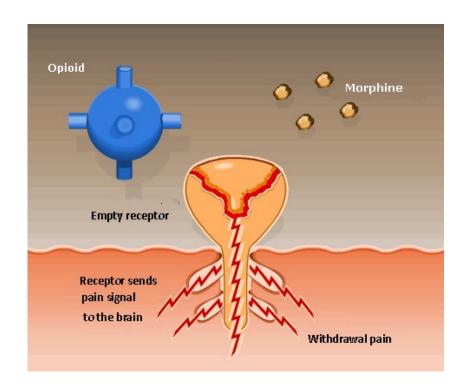
Morphine

Opiods

Definitions

- Opiate naturally occurring substance with morphine-like properties; mean a substance derived from opium
- Opioid all substances, both natural and synthetic, that bind to opioid receptors in the brain (including antagonists)

Narcotic - from greek word 'numb'

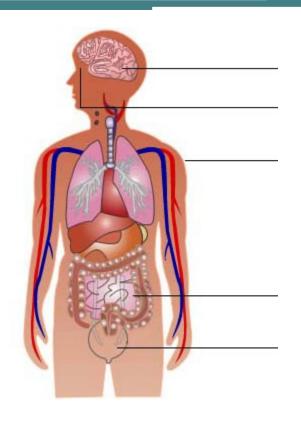


Opium is dried latex obtained from the seed capsules of the opium poppy Papaver somniferum.

Opioids - mechanism of action

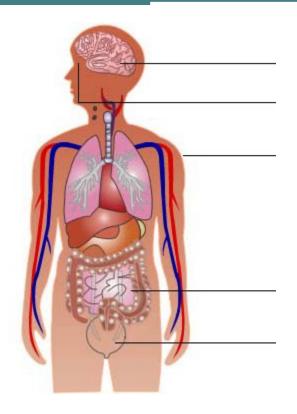
• Via opioid receptors - in the central and peripheral nervous system and the gastrointestinal tract

- μ receptor
- □ κ receptor
- □ δ receptor


Opiods

Uses and routes of administration

- Analgesics
- Anti-tussive
- Anti-diarrhoea
- Intravenously
- Intramuscularly
- Oral, Buccal, Rectal
- Transdermal Patches
- Epidural / Intrathecal


Opioids - effects

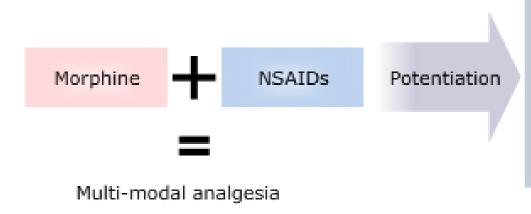
- Brain:
 - Analgesia, sedation
 - Respiratory depression / arrest
 - Euphoria and dysphoria
 - Addiction, tolerance
 - Nausea and vomiting
- Eyes
 - Miosis
- Cardiovascular system
 - Hypotension, bradycardia

Opioids - effects

- Respiratory system
 - Anti-tussive effect
- GI tract
 - Spastic immobility
- Skin
 - Pruritus histamine release
- Bladder
 - Urinary retention

Opiods

Commonly used opioids


	Dose	Elimination 1/2 life	Metabolism	Comment
Sufentanyl	0.1 μg/kg	50 min	liver	Faster onset then fentanyl
Fentanyl	1-2 μg/kg	190 min	liver	Neurosurgery, patches
Alfentanyl	5 – 25 μg/kg	100 min	liver	Faster onset then sufentanyl
Remifentanyl	0.05 – 2 μg/kg	10 min	Plasma and tissue esterases	Infusion only, very short context sensit. ½ life

Opiods

Naloxone

- Pure opioid anatagonist at μ , δ and κ receptors
- Used in opioid overdose as an antidote
- Dose : 1- 4 μg/kg
- Duration of action 30 − 40 min
- ! Often shorter then duration of action of opioid, need for repeated doses

Multimodal analgesia

- Reduced doses of each analgesic
- Improved antinocieption due to synergistic/additive effects
- May reduce severity of any side effects of each drug

SUMMARY - opioids

- Morphine, Fentanyl, Sufentanyl, Alfentanyl
- MOA via opioid receptors
- Used for analgesia, anti–tussive, anti–diarrhoea
- Side effects : respir. depression, tolerance, constipation, nausea + vomiting
- Opioid overdose reversal Naloxone
- Multimodal analgesia simple analgesics + opioids

SUMMARY

- Triad of anaesthesia
 - Analgesia
 - Anaesthesia
 - Muscle relaxation
- Choice depends on
 - Patient factors
 - Type of surgery
 - Whether the surgery is elective or emergency

Questions?

