

- Science about living systems (Fernel, 1642)
- Experimental science (W. Harvey, 1643; C. Bernard, J.E. Purkyně)

MUNI

MED

Aims of the course:

- 1. Learn the terms
- 2. Learn basic facts
- 3. Understand functional relations
- 4. Understand clinical consequences

Teaching forms – lecture, seminar, demonstration, practical (lab)

PHYSIOLOGY – science about functions (dynamics)

- General
- Special
- Comparative
- Evolutional

Functions are studied at 5 levels: molecular, cellular, tissue, organ, organism

MED

Structural and functional organisation of the living systems.

Homeostasis.

Life is a dynamic system with focused behavior, with autoreproduction,

characterized by *flow of substrates, energies and information*.

MUN1

MED

STRUCTURE AND FUNCTIONS OF CELL ORGANELLES

7

Marie Nováková Department of Physiology, Faculty of Medicine, Masaryk University

Molecular biology of the cell. B. Alberts et al., Garland Science 2002

PLASMATIC MEMBRANE

MUNI MED

Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

COMPARTMENTALISATION OF BODY FLUIDS

GIT, lungs, kidney, skin

ſ	Plasma	5% - 3.5 litres	Evans blue, ¹³¹ J
$\left\{ - \right\}$	Interstitial fluid	15% - 10.5 litres	Inulin, manitol, sacharose Extracellular fluid (incl. plasma)
_	Intracellular fluid	40% - 28 litres	Antipyrin, D ₂ O
			Total volume of fluids

MUNI Med

BODY COMPOSITION

Water	60% (80-50%) of body mass
Proteins	18%
Lipids	15%
Minerals	7%

MUNI

MED

Concentration of ions in body fluids

TRANSPORT MECHANISMS

MUNI MED

PASSIVE TRANSPORT MECHANISMS

Differences in body fluids composition result from features of barriers and forces responsible for transport.

DIFUSION

Transport of gases, substrates, metabolites (up to m.w. 60 thous. in direction of concentration gradient of diluted substance. It depends on its solubility in water and lipids.

MUNI MED

OSMOSIS

Transport of water across semipermeable membrane in direction to higher concentration of diluted substance (e.g. in direction to lower concentration of water). It depends on number of particles.

Movement of solvent as a result of osmotic and hydrostatic pressure.

Production and resorption of interstitial fluid (Starling forces).

MUNI

MED

REGULATED TRANSPORTS

FACILITATED DIFUSIONselective carrieramino acidslimited capacityphosphate

COTRANSPORTtransported compound uses concentrationgradient of Na+ as the driving force

SYMPORT in the same direction **ANTIPORT** in opposite direction

glucose, AA Ca²⁺, H⁺

 $M \vdash D$

Similar transports:

•Ca²⁺/H⁺

- \bullet Na⁺/K⁺
- •K+/H+
- •Na⁺/H⁺

16

ACTIVE TRANSPORTS

Na⁺/K⁺ ATP-ase (exchanger) AGAINST concentration gradient

Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

PLASMATIC MEMBRANE

MUNI MED

Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

IONIC CHANNEL

MUNI MED

Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

Molecular biology of the cell. B. Alberts et al., Garland Science 2002

MUNI MED

Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

Molecular biology of the cell. B. Alberts et al., Garland Science 2002

Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

21 Marie Nováková Department of Physiology, Faculty of Medicine, Masaryk University

K⁺ **Repolarization reserve**

MUNI Med

Na^+

SIGMA RBI, www.sigma-aldrich.com

Ca⁺

L, T, N type

MUNI

MED

SIGMA RBI, www.sigma-aldrich.com

COMMUNICATION AMONG THE CELLS

MECHANICAL CONNECTION

• desmosomes (macula adherens; cell adhesion and mechanical

stability of tissues) – epidermis, liver, myocardium

ELECTRICAL CONNECTION

• gap junction (nexus) (in intercalar disc; consists of conexons)

HUMORAL CONNECTIONS (REGULATION)

- autocrine
- paracrine
- endocrine
- juxtacrine
- neurocrine

Receptor, ligand, second messenger

NERVOUS CONNECTIONS (REGULATION)

24 Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

• synapse

• hypothalamus - pituitary gland

• adrenal medulla

25 Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

MUNI Med

HOMEOSTASIS - MAINTENANCE OF CONSTANT CONDITIONS IN THE INTERNAL ENVIRONMENT

IN A BROAD SENSE – in body fluids
IN A STRICT SENSE – in particular compartments
(blood....organelles) or maintenance of certain parameter (blood pressure, muscular tension, etc.)

REGULATED PARAMETERS:

body temperature, volume of body fluids, osmotic pressure, pH, pO_2 , pCO_2 , concentration of ions, glycaemia, etc. (isohydria, isovolemia, isoionia, isoosmia, ...)

DISTURBANCES IN HOMEOSTASIS

• Communication with surroundings

lungs, GIT, kidneys, skin

• Internal sources of instability

metabolism

Extracellular fluids represent transport systems

REGULATION

Control of living systems.

Living systems – open systems; their existence depends on flow of energy and substances between organism and environment in both directions.

 $M \vdash 1$

Appears at all levels of system (cell – whole organism).

ASSOCIATION OF DIFFERENT LEVELS OF REGULATION

 $M \vdash D$

Systemic regulation – nervous and humoral

Local regulation (metabolic) – chemical – pO₂, pCO₂, pH, prostaglandins

Autoregulation

myogenic –constant blood flow during changing perfusion pressure

in the heart – homeometric and heterometric

Deviation from desired value oscillates or continuously increases.

MED