MUNI NED

MUNI MED

1

Kamil Ďuriš

Department of Pathological Physiology (A18) kduris@med.muni.cz

MUNI

MED

Literature

- Ganong's Review of Medical Physiology

- Boron - Medical Physiology

- Guyton - Physiology Review

Constanzo - Physiology

The other sources

- Neuroscience Online, The University of Texas

An Open-Access educational resource provided by the Department of Neurobiology and Anatomy at The University of Texas Medical						as ton
Home Site Preface	Cellular and Molecular Neurobiology	Sensory Systems	Motor Systems	Homeostasis and Higher Brai	in Functions Co	ontact Us
Google™ Custom Searci	Search			Give to Neuroscience Onlin		ISER SURVEY
Visit <i>Neuroanatomy Online</i> , our new open-access electronic laboratory designed to compliment <i>Neuroscience Online</i> . Section 1: Cellular and Molecular Neurobiology						
 Introduction to Neurons and Neural Networks, John H. Byrne, Ph.D. Chapter 1: Resting Potentials & Action Potentials, John H. Byrne, Ph.D. Chapter 2: Ionic Mechanisms of Action Potentials, John H. Byrne, Ph.D. Chapter 3: Propagation of Action Potentials, John H. Byrne, Ph.D. Chapter 4: Synaptic Transmission at the Skeletal Neuromuscular Junction, John H. Byrne, Ph.D. Chapter 5: Mechanisms of Neurotransmitter Release, John H. Byrne, Ph.D. Chapter 6: Synaptic Transmission in the Central Nervous System, John H. Byrne, Ph.D. Chapter 7: Synaptic Plasticity, John H. Byrne, Ph.D. Chapter 8: Organization of Cell Types, Jack C. Waymire, Ph.D. Chapter 9: Synapse Formation/Survival/Elimination, Andrew J. Bean, Ph.D. Chapter 10: Transport and the Molecular Mechanism of Secretion, Jack C. Waymire, Ph.D. Chapter 11: Acetylcholine Neurotransmission, Jack C. Waymire, Ph.D. 						

MUN]

MED

The other sources

- MIT - Brain Structure and Its Origins

- http://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-

14-brain-structure-and-its-origins-spring-2014/#

6 Introduction to neuroscience - The regulatory role of nervous system

MUNI Med

The objetives

Basic understanding of the role and function of

nervous system

MUNI

MED

Why and how to **STUDY** neuroscience

Neuroscience: Brain

Why and how to **STUDY** neuroscience

MED

What is nervous system good for?

MUNI

MED

http://edublog.amdsb.ca/

MUNT

MED

Unicellular organism

- One cell has to do everythinglower effectivity
- Total dependence on environment
- High level of stress
- Short life time

Multicellular organism

 Functional specialization of particular cells – higher effectivity

 $\mathbf{N} = \mathbf{I}$

- Inner environment homeostasis
- Lower level of stress
- Longer life time

Compartmentalization

- Cellular specialization leads to compartmentalization on several levels
 - Tissue level
 - Organ level
 - Organ system level

Compartmentalization

- Cellular specialization leads to compartmentalization on several levels
 - Tissue level
 - Organ level
 - Organ system level
- There are barriers in between compartments
- Properties/content may vary among different compartments

- The essentials for survival of multicellular organism
 - To maintain homeostatis
 - > To coordinate bodily functions

- The essentials for survival of multicellular organism
 - To maintain homeostatis
 - > To coordinate bodily functions
- Maintaining homeostasis
 - The composition of inner environment
 - The integrity of organ/ bodily barriers

- The essentials for survival of multicellular organism
 - To maintain homeostatis
 - > To coordinate bodily functions
- Maintaining homeostasis
 - The composition of inner environment
 - The integrity of organ/ bodily barriers
- Coordination of bodily functions
 - To receive signals from outer and inner environment
 - To process this information
 - To respond in a coordinate manner to these stimuli

Coordination of bodily functions

To receive signals from outer and inner environment

To process this information

To respond in a coordinate manner to these stimuli

- Regulation
 - Nervous
 - Humoral

- Regulation
 - Nervous
 - Humoral

http://biology.about.com/od/anatomy/p/Hypothalamus.htm

MED

Central nervous system controls both types of regulations

Humoral regulations

- Hormone
- Non-specific channel of conduction (blood stream)
 - Target site defined by specific receptor
 - Low energetical demands
 - Slow
 - Long duration

Nervous regulations

- Neurtransmitters
- Specific channel of conduction
 - Target site defined by infrastructure
 - High energetical demands
 - Fast
 - Short duration

 $M \vdash 1$

Hormonal and nervous regulations

MUNI MED

23 Introduction to neuroscience - The regulatory role of nervous system

MUNI Med

24 Introduction to neuroscience - The regulatory role of nervous system

MUNI MED

MUNI Med

26 Introduction to neuroscience - The regulatory role of nervous system

MUNI MED

Evolutionary approach Evolution is not revolution

27 Introduction to neuroscience - The regulatory role of nervous system

MUNI Med

 Evolutionary old structures have not been replaced by new ones during evolution, but the old has been kept and the new added

- Evolutionary old structures have not been replaced by new ones during evolution, but the old has been kept and the new added
- Evolutionary younger structures were associated with new functions or with the improvement in existing functions

- Evolutionary old structures have not been replaced by new ones during evolution, but the old has been kept and the new added
- Evolutionary younger structures were associated with new functions or with the improvement in existing functions
- It is important to ask what is any particular function good for and how it has been improved in course of evolution

MUNI MED

67. The importance and the regulatory role of nervous system

- ✓ Unicellular versus multicellular organisms, compartmentalization, control is essential
- ✓ Nervous system is essential for multicellular organisms
- Homeostasis maintenance
- Bodily functions coordinations
- ✓ Regulation
- Definition
- Nervous vs. humoral
- ✓ Regulation vs. anticipation

MUNI NED