

Inflammation II. (proliferative, granulomatous). Progressive changes. General oncology.

Inflammation II.

Proliferative inflammation

- ★ Healing (reparation) of defects (wound, regressive changes, postinflammatory etc.) → granulation tissue → scar
- often pronounced in chronic inflammation
- primary proliferative inflammation uncommon (fibromatosis)
- reactive fibro/myofibroblastic lesions
 - proliferation of myofibroblasts, occasionally forming tumour-like masses
 - nodular fasciitis, myositisossificans may be posttraumatic, often idiopathic

Chronic inflammation

- prolonged duration
- tissue injury + inflammatory reaction + repair
- Causes: persistent infection, immune mediated inflammatory reaction, prolonged exposure to harmful agents (toxin)

Granulation tissue

Major repair instrument

× In:

⇒ wound, fracture, ulcer, necrosis healing; thrombus, haematoma organisation

× Gross:

⇒ soft red tissue, granular surface (capillary loops)

✗ Micro:

⇒ fibrin fibers

⇒ inflammatory reaction

- *⇒ fibroblasts, myofibroblasts*
- ⇒ starting collagen fibers production
- ⇒ proliferating capillaries angiogenesis
- ⇒ later intercellular matrix + tissue remodeling, retraction scar formation

Granulation tissue – inflammatory cells

3 tissue with inflammatory cells

Granulomatous inflammation

- **x** distinctive pattern of chronic inflammation
- historical classification:
 - ⇒ "non-specific" infl.
 - common general microscopic picture, i.e. purulent infl.
 - ⇒ specific"
 - micro typical for a specific cause
- ★ aggregated macrophages unable to destroy cause → transformation into epithelioid and multinuclear cells → granuloma
- delayed type hypersensitivity (T-cells, macrophages, sometimes eosinophils)
- foreign body granuloma x immune granuloma

Granulomatous inflammation

causes of granulomatous disease:

⇒ specific infections

 mycobacteria (e.g. Tuberculosis, leprosy, atypical mycobacteria), many types of fungi, parasites...)

⇒ foreign bodies (undigestible)

- endogenous (keratin, necrotic bone, cholesterol crystals, urate ...)
- exogenous (e.g. suture material, silica, talc, asbestos,...)

➡ chemicals and drugs

- beryllium, sulphonamides
- unknown ? pathologic hypersensitive reaction to some common antigenes (combination of inborn and external factors)
 - Crohn's disease, sarcoidosis, Wegener's granulomatosis

stromal and lymph node reaction in some tumors (Hodgkin's malignant lymphoma)

Tuberculosis

× etiology

- → Mycobacterium tuberculosis
 - Ziehl-Neelsen staining, acid-resistant bacteria , culture or PCR detection

tuberculous granuloma - basic morphology:

- ➡ central caseous necrosis (basophilic nuclear fragments)
- ➡ epithelioid macrophages
- multinucleated Langhans' giant cells (fusion of macrophages)
- → rim of T-cells

Tuberculous granuloma

HE staining shows amorphous eosinophilic area stoppled by haematoxyphilic nuclear debris

Langhans' giant cell

Ziehl-Neelsen staining, acid-resistant bacteria

TB - morphology

TB exudate – serofibrinous exudate + macrophages with M.tbc – Orth cells
TB granuloma (tubercle) - proliferative form
caseification
colliquation
calcification

Tuberculosis

> Primary tuberculosis

- ➡ lungs usually first site of contact (GIT, skin)
- Ghon complex focus of primary infection , similar granulomas in lymph nodes draining the affected portion of lung
- primary lession usually organise -> fibrocalcific nodule (tubercle bacilli may be still present) x complications

Secondary tuberculosis: in previously sensitized host

- mostly caused by reactivation of old primary infection (event. reinfection)
- ➡ in lung apical foci + cavitation, porogennous spread
- ➡ isolated organ tb (renal, adrenal, meningeal, osteomyelitis, salpingitis
- progression -> organism virulence x host sensitivity

Tuberculosis

miliary (disseminated) tuberculosis

- ⇒ may be consequence of either primary or secondary tb
- hematogenous dissemination -> numerous small granulomas in many organs (lungs, meninges, kidneys, bone marrow, liver, ...
- ⇒ serious condition (untreated nearly 100% fatal)

Complications:

- ➡ vessel arosion + rupture hemoptysis / hemoptoe
- ⇒ spine deformities (heart + lung function problems)
- ➡ secondary amyloidosis
- ⇒ infertility

Sarcoidosis

- ★ systemic chronic granulomatous inflammatory disease, direct etiology unknown (disordered immune regulation in genetically predisposed hosts exposed to certain environmental agents), ↑ CD4+ T-cells
- mostly in mediastinal LN, lung, skin, eye; any localisation possible
- ✗ regular small "tuberculoid" granulomas without caseous necrosis (asteroid inclusions, Schaumann's inclusions in Langerhans' cells) → x TBC (→ biopsy, dg. per exclusionem)

Sarcoidosis

clinically:

- ⇒ may be asymptomatic
- ⇒ chest X-ray bilateral lymphadenopathy
- ➡ slow progression or variable remission + healing
- ➡ 10% mortality (lung fibrosis, cor pulmonale)
- ⇒ 20% lung or ocular dysfunction
- ➡ treatment: *corticosteroids*

lung sarcoidosis

lymph node sarcoidosis

lymph node sarcoidosis

syphilis (lues)

- **×** *Treponema pallidum* spirochaete
- forms:
 - ➡ acquired (mostly STD) 3 stages
 - congenital (transplacental transmission)
 - late abortion or stillbirth
 - infantile liver and lung fibrosis, osteochondritis
 - childhood keratitis, deafness, teeth anomalies

syphilis (lues) - acquired

⇒ primary chancre

- typically acquired by direct sexual contact
- primary chancre (skin lession) appears in the entry site 3 wks after contact
- Primary chancre single, firm, painless, non-itchy skin ulceration with a clean base and sharp borders between 0.3 and 3.0 cm in size, serous exudate + treponemata
- associated with unilateral or bilateral inguinal lymphadenitis
- without treatment heals in a few weeks (3-6) -> atrophic scars

⇒ secondary

 early generalisation – transient skin and mucosal rash, generalised lymphadenitis in many cases, non-specific + gen. signs (fever, sore throat, weight loss, ...), numerous plasma cells in infiltrate in condylomata lata on moist skin, erosion on mucosa

➡ tertiary

- specific changes, 8 25 years after primary infection,
- symptoms according to localisation of gummata (cerebral cortical atrophy, progressive paralysis, aortic aneurysm)
- gumma: mm-cm, tuberculoid granuloma without complete caseous necrosis (rubbery consistency)

Syphilis – primary

Syphilis - secondary

Condylomata lata

Syphilitic rash

Treponema pallidum (spirochetes visualized by silver staining)

× Mycobacterium leprae

→ in developed countries very rare, usually imported

🗴 formy:

⇒ tuberculoid form

 vigorous imunological T_H1 reaction -> granulomas without caseous necrosis in the skin, perineural – ulcers, paralysis, atrophy

⇒ lepromatous form

- multiple and diffuse infiltrates in the skin (facies leontina), eyes (blindness), lymph nodes, spleen
- foamy macrophages + mycobacteria
- often progresive (anergic host)

Leprosy – facies leontina

PROGRESSIVE CHANGES

Progressive changes

* healing of tissue defects

- ➡ regeneration
- ⇒ repair
 - regeneration and repair often in combination

x tissue adaptation to the changed conditions

hypertrophy
 hyperplasia
 metaplasia

REGENERATION

replacement by identical tissue (morphology, function)

according to regenerative ability:

- ⇒ labile cells
 - epithelial cells of skin, gut,..., bone marrow,...,
 - permanent regeneration from stem cells (rapid "turn-over time")
- ⇒ stable
 - liver, kidney (proximal tubule epithelial cells), smooth muscle
 - regeneration on demand in tissue loss
- Þ permanent (postmitotic)
 - neurons, cardiac muscle cells
 - mostly no complete functional regeneration

✗ replacement of lost tissue usually by granulation tissue
 → fibrotic scar

- may affect the function of the organ
 - ⇒ scar after myocardial infarction
 - ⇒ lung fibrosis, cirhosis,...
Chronic hepatitis

× > 6 months

causes:

- ⇒viral hepatitis HBV , HCV, HDV, (HEV, HGV)
- ⇒non-alcoholic fatty liver disease
- ➡ toxic (alcohol, drugs)
- ⇒ autoimmune (antibodies antinuclear, x smooth muscle, x microsomal)
- inborn metabolic defects (Wilson disease, haemochromatosis, alfa-1antitrypsin deficiency, etc.)

gross: enlargement, tougher consistency, rougher surface

- combination of damage, fibrosis, irregular hyperplasia of hepatocytes
- progression to nodular transformation cirrhosis

Chronic hepatitis

Disease activity (grade):

- interface activity (periportal necrosis)
- portal inflammatory infiltrate
- * intralobular necroinflammatory
 activity

Extent of fibrosis (stage):

fibrotic septa
bridging
nodule formation
cirrhosis

Chronic hepatitis

× Etiology:

- ⇒massive acute necrosis
- ⇒chronic hepatitis
- ⇒biliary diseases
 - inborn (atresia),
 - acquired: autoimmune (primary biliary cirrhosis, prim. sclerosing cholangitis), sec. biliary cirrhosis (chronic obstruction)
- ⇒cryptogenic cirrhosis

Gross: tough, usually diminished size

- ⇒ micronodular
- ⇒macronodular

* diffuse parenchymal injury + consequent fibrosis (bridging septa)

* nodular transformation (hepatocyte regeneration x failure of architectectural reconstruction), persisting regressive changes

reorganisation of vascular architecture

changes of intrahepatic biliary tract, incl. ductular hyperplasia

Complications of cirrhosis

Iver failure: inadequate synthesis, inadequate detoxication, insufficient Kupffer cell function

 portal hypertesion: splenomegaly, intestinal venous congestion (! infarsation, inflammation) ascites (! peritonitis), portocaval anastomoses

carcinoma (usually hepatocellular)

Cirrhosis – nodular transformation

Cirrhosis – nodular transformation, chronic hepatitis, cholestasis

Cirrhosis

Stomach erosions

- SAIDs + other drugs, alcohol, vomiting, stress, burns, infection, raised intracranial pressure
- ***** antrum and body, multiple
- microcirculation disorder, capillary rupture, acid hypersecretion
- **×** < 3 mm
- Iimited by m. mucosae !!!
- healing by regeneration

Erosion / stress ulcer

186 1963

Chronic peptic ulcer

- * chronic, usually solitary lesion in GIT parts exposed to acid and peptic juices, commonly at mucosal junction
- * extends through m. mucosae into submucosa or deeper
- > bulbus duodeni, stomach antrum, GE junction, stomic junction, Meckel diverticulum
- imbalance between mucosal defence and damage by gastric juices/bile, drugs, ischaemia (stress)

H. pylori (100% in duodenal ulcers, cca 70% in gastric ulcers), but only 10-20% of infected develop ulcer

Chronic peptic ulcer

gross: starts as sharply demarcated defect, 4 – 40 mm, straight walls, haemorrhagic base

Iater overhanging mucosa, sometimes slightly elevated borders, smooth base, scarring

histology: in active ulcer 4 layers

- ⇒ cell debris and fibrinoid necrosis
- mixed inflammatory infiltrate
- ⇒granulation tissue
- ➡ fibrotic scar

complications

- perforation, shock, peritonitis
- penetration into adjacent organs
- scarring, stenosis
- malignant transformation (stomach)

Chronic peptic ulcer

Perforated duodenal ulcer

Chronic peptic ulcer - duodenum

Chronic peptic ulcer - duodenum

MYOFIBROSIS DISPERSA CORDI

Repeated multiple microinfarcts/myomalatia of cardiomyocytes ("angina pectoris")

Repair by granulation tissue, scarring

Disperse scars – small whitish foci in myocardium

MYOFIBROSIS DISPERSA CORDI

Hyperplasia

✗ increase in cell number by cell division → tissue/organ enlargement

- physiological: hormonal, compensatory
 Hyperplasia of breast tissue (in puberty, pregnancy, lactation)
- pathological: excess of hormones / growth factors, still under control (autonomous exceptions rare)
 - Benign prostatic hyperplasia
 - Endometrial hyperplasia
 - ➡ Thyroid hyperplasia (goiter)

BENIGN PROSTATIC HYPERPLASIA

common in older men, high incidence > 60 yrs

- adenomyomatous hyperplasia
 - ⇒ stromal (smooth muscle, fibrotic tissue)
 - ⇒ + glandular, alternating with atrophy, cystic and regressive changes
 - ⇒ !!! two cellular layers outer myoepithelial, inner secretory !!!
- gross: enlarged, nodular, tougher

main changes in central (periurethral) region

BENIGN PROSTATIC HYPERPLASIA

× Outcome:

- ⇒ partial → complete urethra obstruction -> urinary residuum, risk of infection (+ ascending pyelonephritis)
- bladder trabecular hypertrophy
- ⇒ hydronephrosis
- Benign, but setting for possible preneoplastic changes
- Th: surgery, drugs

the urethra.

BENIGN PROSTATIC HYPERPLASIA

BENIGN PROSTATIC HYPERPLASIA

Endometrium, menstrual cycle

early proliferative
 late proliferative
 early secretory
 mid/late secretory

Hyperplastic endometrium

1 endometrial hyperplasia 2 Polypous endometrial hyperplasia

ENDOMETRIAL HYPERPLASIA

Gross: thicker mucosa (USG)

× Micro:

- ⇒both glandular and stromal proliferation
- ⇒ glands more numerous (norm 1:1)
- ⇒ architectonics simple (cystic dilatation) or complex
- ⇒ proliferative epithelium (basal nuclei, possible stratification)
- ATYPIA: nuclear enlargement, hyperchromasia, distinctive nucleoli, mitotic activity, anisokaryosis.

Classification of endometrial hyperplasia

× Simple

- ⇒ cystic glandular dilatation
- ⇒ increased glandular + stromal cellularity
- ➡ no atypias

Complex

- ➡ major architectural change infoldings
- ⇒ lower amount of stroma crowding

Atypical (simple or complex)

- specify architecture: simple or complex + cellular atypia
- 🗢 endometrial intraepithelial neoplasia

Simple hyperplasia

Complex hyperplasia

complex hyperplasia without atypia

Complex hyperplasia with atypia

Thyroid hyperplasia

×Goiter

⇒ diffuse

- simple nontoxic
- Graves disease autoimmune,
- diff. hyperplasia

Nodular goiter

activation of hypothalamic-pituitary-thyroidal axis (iodine defficiency)
 hyperplastic phase, colloid transformation – involution
 mixture of dilated follicles, regressive fibrosis, bleeding, calcification

Thyroid hyperplasia nodular goiter

Graves' disease

➤ Hyperplastic thyroid → hyperthyroidism

× Graves' (Basedow) disease

⇒ organ-specific AI,

⇒ autoantibodies bind on TSH receptor – long-acting thyroid stimulator (LATS)

Gross – enlarged, firm, red

😕 Micro – follicular hyperplasia, papillary, colloid reduction, stromal hyperaemia

Hypertrophy

increase in cell size without cell division - ↑ production of cellular proteins

* physiogical:

- muscle hypertrophy (response to increased workload)
- hormone-induced (pregnant uterus)

pathological conditions:

- myocardial hypertrophy essential hypertension, valvular disease (aortal, mitral stenosis, etc)
- ➡ arterial wall hypertrophy in hypertension

Metaplasia

- reversible replacement of one mature diffrerentiated cell type by another via stem cells (adaptive substitution under stress conditions)
- exxagerated differentiation (non-keratinizing squamous epithelium into keratinizing, cartilage ossification, ...)
- (rarely direct transformation of a cell by de-differentiation followed by different differentiation)
- epithelial or mesenchymal cells
- may undergo further indirect transformation to neoplasia via dysplasia
- chronic cell injury smoking, reflux of gastric acid to oesophagus, etc.
 - \Rightarrow squamous metaplasia (columnar \rightarrow squamous)
 - bronchial epithelium smokers
 - endocervical mucosa
 - ➡ interstinal metaplasia
 - Barret's oesophagus in reflux, gastric mucosa in chronic gastritis

Incipient squamous metaplasia of endocervical colummar epithelium

Incipient squamous metaplasia of endocervical colummar epithelium

Immature sq. metaplasia 🚑

Barrett's oesophagus

 1 intestinal metaplasia (goblet cells)
 2 PAS staining – acid mucin substances detection in metaplastic cells

Barrett's oesophagus

Tumour-like lesion

- a nonneoplastic demarcated growing focal lesion that resembles a true neoplasm (by naked eye or microscopy)
 - ⇒ progresive changes
 - → cysts, pseudocysts
 - chronic inflammation (inflammatory pseudotumor)
 - embryonal development changes (hamartoma, choristoma)

Tumour-like lesion Progressive changes

- Sometimes a preneoplastic change
- * hyperplasia, hypertrophy, hyperregeneration
 - 🗢 e.g. nodular hyperplasia
 - nodular goiter,
 - benign prostatic hyperplasia, etc.
 - pseudoepiteliomatous hyperplasia epithelial hyperplasia associated with chronic irritation and inflammatory response
 - e.g. squamous epithelium in the border of varicose ulcer

Tumour-like lesion Cysts, pseudocysts

- cyst pathological cavity lined by epithelium, usually fluid-filled
- pseudocysts lack epithelial / endothelial / mesothelial lining cells
 e.g. pancreatic pseudocyst, postmalatic pseudocyst

Tumour-like lesion Cysts, pseudocysts

common types of cysts:

- ➡ congenital due to embryonal deffect
 - branchial, thyroglossal, familial polycystic disease
- → retention epidermoid, pilar cysts of the skin
- ⇒ implantation as a result of surgical or accidental implantation of epidermis
- ⇒ parasitic hydatid cysts due to Echinococcus
- ⇒ neoplastic true tumors- e.g. cystadenoma, cystadenocarcinoma

Tumour-like lesion Cysts, pseudocysts

- solitary x multiple / polycystosis
- * according to content (serous, mucinous, sebaceous, colloid, hemorrhagic, …)

Tumour-like lesion Chronic inflammation

*part of a repair process (suture granuloma) relapsing/chronic purulent inflammation (pelvic inflammatory disease, actinomycosis) xanthoma (accentuated macrophagic reaction, yellow color) inflammatory polyp/hyperplasia

Tumour-like lesion Embryonal maldevelopment

× choristoma

- mass of histologically normal tissue that is present in an abnormal location heterotopic tissue rest
- ⇒ adrenal choristoma in kidney, etc.

* hamartoma

- benign malformation consisting of an disorganized abnormal mixture of mature indigenous cells and tissues
- ➡ chondrohamartoma of lung (possibly a true tumor) , etc.

chondrohamartoma of lung

3. tubular structures lined by respiratory epithelium

chondrohamartoma of lung

- 2. adipose tissue
- 3. tubular structures lined by respiratory epithelium
- 4. fibrous tissue

× tumour

Iesion with persistent autonomous abnormal growth / unregulated cell division

tumour structure:

- ➡ parenchyma (neoplastic cells)
- Stroma (connective tissue support and nutrition) inadequate stroma → possible regressive changes

x epithelial dysplasia = premalignant condition

⇒ micro:

- loss of normal maturation/differentiation
- cellular atypia
 - cellular pleomorphism, 个 N/C ratio, hyperchromatism
- changes in the structural arrangement of cells in the epithelium

⇒ classification:

- Low-grade (mild) x high-grade (moderate/severe) dysplasia
- may be caused by chronic inflammation, irritation (physical or chemical injury), carcinogenic agents (HPV)
- may be reversible in early stages (low-grade dysplasia), high-grade dysplasia has a higher risk of progression to carcinoma in situ or invasive carcinoma

Cervical dysplasia High-grade CIN (CIN II)

Cervical dysplasia High-grade CIN (CIN II)

🗴 anaplasia

- ➡ loss of cell differentiation
- morphology of anaplastic tumors may mimic immature/embryonal tissue

× carcinoma in situ

- Iocalized epithelial neoplasm with all the cellular features of malignancy, but without invasion through epithelial basement membrane
- often together with dysplasia in the group (concept) of intraepithelial neoplasia (named after localisation – CIN, PIN, VIN, PanIN, etc.)

invasive carcinoma

- ⇒ the final step in the process of carcinogenesis
- ⇒ invasion of tumor cells through the basement membrane
- → metastatic potential

desmoplasia / desmoplastic stromal reaction

⇒ proliferation of connective tissue, stromal response to neoplastic process.

General oncology Carcinogenesis

Multifactorial, complex

- ⇒ external factors
 - ionising, non-ionising radiation
 - carcinogens (tobacco smoke, aflatoxins, nitrosamines)
 - oncogennic viruses (HPV, EBV, HTLV-1, HSV-8), bacteria (Helicobacter)

⇒endogennous factors - hereditary

- approx. 15% of malignancies due to genetic factors
- inherited tumor risk breast/ovary carcinoma by mutation BRCA1 či BRCA2; familial polyposis coli, neurofibromatosis, retinoblastoma, Li-Fraumeni syndrome

General oncology signs of malignancy

- ★ CYTOLOGIC CHANGES (ATYPIA) :
 - cytologic and/or nuclear pleomorphism, anisokaryosis, anisocytosis
 - ⇒ nuclear enlargement
 - increased nucleocytoplasmatic index (N/C)
 - ➡ nuclear hyperchromasia
 - ➡ irregular chromatin texture
 - irregular shape of the nuclear membrane (grooves)
 - ➡ increased mitotic activity
 - atypical mitoses (tripolar, multi-center, asymmetrical)
 - sometimes multinucleated cells

Atypical mitosis (tripolar)

Principal characteristics of benign and malignant tumors

Nomenclature of tumours

- All have the suffix "-oma"
- Benign epithelial tumor: papilloma, adenoma
- Benign connective tissue have a prefix denoting the cell of origin (fibr-, leiomyo-, hemangio -, lipo ,...)
- Malignant epithelial tumors are carcinomas
- Malignant connective tissue tumors are sarcomas

Examples of tumour nomenclature

Туре	Benign	Malignant
Epithelial Squamous cell Glandular	Squamous cell papilloma Adenoma	Squamous cell carcinoma Adenocarcinoma
Mesenchymal Smooth muscle Addipose tissue Blood vessels	Leiomyoma Lipoma Angioma	Leiomyosarcoma Liposarcoma Angiosarcoma

TUMOUR DIAGNOSIS

1. MICROSCOPIC

⇒ + event. IHC, electron microscopy, molecular biology, genetics

2. TUMOUR TYPE (histogenetic)

- epithelial,
- mesenchymal
- neuroectodermal
- germinal
- mixed
- (choriocarcinoma)
- (mesothelial)

TUMOUR DIAGNOSIS

3. <u>GRADING</u>

histologic grade of malignancy » possible biologic behaviour

G1 – G4 well differentiated - undifferentiated

4. STAGING

Ν

stage according TNM classification

tumor node metastasis

Μ

WHO International Classification of Diseases for Oncology (ICD-O):

numerical classification and coding system by topography and morphology

★WHO Classification of Tumours, Pathology and Genetics: → histologic classification by organ system

 Topography (localization) C00.0 – C80.9 (lip – unknown primary localization)
 Subdivision: C34 lung C34.0 main bronchus C34.1 upper lobe

. . .

Morphology (histology): digital

× 4 digits – basic histogenetic structure
 8070 – tumor of squamous cell
 8140 – tumor of glandular cell

Morphology (histology): digital

×5. digit – biologic behaviour

- /O benign (incl. low grade dysplasia)
- /1 uncertain, intermediate biologic behaviour, low malignant potential
- /2 high grade dysplasia, carcinoma/melanoma in situ
- /3 malignant, primary localization
- /6 malignant, metastasis
- /9 malignant, unknown if primary or metastatic

Morphology (histology): digital

- * 6. digit : grading/differentiation of malignant tumors
- 1 4 well moderate low undifferentiated
- 8140/0 adenoma

8140/31: well differentiated adenocarcinoma in primary localization

Staging

- T size or contiguous extension of the primary tumor
- N absence or presence/extent of cancer in the regional draining lymph nodes M absence or presence of distant spread or metastasis

×T0 no evidence of primary tumor **×Tis** tumor in situ xT1,T2,T3,T4 increasing size/local extension ***TX** primary tumor cannot be assessed similarly N0, N1-4, NX ×M0,M1

Example: *C16.1 M-8140/33 pT3,pN3,pM1*

> Poorly differentiated adenocarcinoma of stomach fundus with extension into subserosal connective tissue, metastases in 7 or more LN, with distant metastases

Treatment of tumors

- cancer treatment is striving to reduce (ideally eliminate) all tumor cells
- problems: inoperable tumors, resistance to therapy, toxicity of therapy, late side effects of treatment

palliative care

- supportive care provided to patients with incurable diseases in order to improve the quality (often not the quantity) of life
- > prevention is the most effective !!!

Treatment of tumors

surgery

- cancer location !!! Mostly solid tumors x leukemia
- ⇒ the goal of treatment is usually to remove the tumor with surgery

chemotherapy

- are most often used for treating leukemia, lymphoma
- neoadjuvant therapy
 - aims to reduce the size or extent of the cancer before using radical treatment intervention)
- radiation

hormone therapy

- ⇒ breat carcinoma, prostatic carcinoma,...
- the histological examination determined the presence of hormone receptors on tumor cells

Treatment of tumors

biological therapy

- type of treatment that works with your immune system
 X chemotherapy attacks the cancer cells directly
- ⇒ cytokines (IFNα, IFNγ, IL-2), monoclonal antibodies
- gene therapy in the future ???