Experimentally induced arrhythmias in rat

Adrenergic hyperstimulationHyperkalemiaBlock of cardiac calcium channels

Normal ECG curve in human...

...and in rat heart

Note the missing ST segment (phase 2 = plateau of the ventricles) SA nodal rate about 300/min

Vegetative nervous system and the heart

Receptors:

Sympathetic nervous system:

 β 1 - positively inotropic, dromotropic and chronotropic (mainly through opening of pacemaker F-channels and Ca²⁺ channels in SA node, AV node and working myocardium)

 $\beta 2$ – apical myocardium, vessels – vasodilatation

 $\alpha 1$, $\alpha 2$ – vasoconstriction (lower effect in coronary vessels, norepinephrine effect)

Parasympathetic:

M2 – negatively chronotropic (inhibits opening of Ca²⁺ channels, opens K_{Ach} channels)

Effects of vegetative nervous system on pacemaker cells

Heart during catecholamine overload

- - Increase systolic function at the expense of diastolic dysfunction
- Calcium overload of cardiomyocytes
 - DAD \rightarrow premature beats
 - $-\uparrow$ oxygene consumption \rightarrow ischemia
- β2-receptor phosphorylation transition from G_s to G_i signalization → decreased contractility in the apex
 - but it acts against Ca overload and necrosis
- Vasoconstriction?

Potassium

- The most abundant intracellular cation (98% intracellulary)
- Most willingly passes cellular membrane
- Concentration gradient is maintained by Na+/K+ ATPase
- The extra/intracellular distribution is regulated by hormones (insulin, adrenaline, aldosterone) and pH
- Its total body content depends mainly on renal functions
- Both hyper- and hypokalemia are frequent conditions in clinical practice and both are proarrhythmogenic

Potassium and the membrane potential

- Positively charged, intracellular ion: ↑ concentration → lowering of membrane polarity (analogy of a small and a large basin connected by a hose)
- Various functionally different K⁺ channels
- By various mechanisms, potassium increases the permeability of K⁺ channels
 - direct binding
 - competion with Mg²⁺ that closes the K⁺ channels
 - changes in expression and translocation

Effect on sodium channels

- Mild hyperkalemia easier excitation
- Severe hyperkalemia block of a portion of Na⁺ channel
 - Slower conduction
 - Finally the threshold voltage "runs away" from baseline voltage and the depolarization is no longer possible
- Mild hypokalemia hyperpolarization
- Severe hypokalemia lack of substrate for the Na/K ATP-ase → lower polarity, easier excitation

Potassium – main effects

Hyperkalemia

- Peaked T wave (dif. dg. hyperacute phase of MI)
- Wide QRS (may merge into sinusoid wave with T)
- Widening, flattening and event. disappearing of the P wave (but sinus rhythm remains for a long time)
- Higher excitability at the beginning, then lower, diastolic arrest in the end (heart is depolarized compared to the normal state)
- \uparrow risk of re-entry (\uparrow differences in conduction velocities)

Hypokalemia

- Flat, wide T-wave
- Pathologic U wave (delayed repolarization), lengthening of QT (QU) interval
- EAD, torsades de pointes
- Sometimes, peaked P is present
- \uparrow risk of re-entry (\uparrow differences in refraktory periods)
- First lower excitability (hyperpolarization), then higher

Changes of ECG in hyper-/hypokalemia

Calcium

- Ion that is necessary for muscle contraction
- Intracellulary, it is present in very low concentration (making high gradient between cytoplasm and cell)
- In cardiomyocyte and skeletal muscle, it is also present in sarcoplasmic reticulum
- Cardiomyocyte (and smooth muscle cell) bears specific Ca²⁺-channels, that are necessary for phase 2 (plateau), pacemaker function and conduction through slow cells
- They can be blocked by specific agents to slow the heart rate and enhance vasodilatation by smooth muscle relaxation

Calcium and the membrane potential

- Extracellular ion Membrane potential gets into more negative values
- During the action potential, Ca²⁺ activate potassium (and chloride) channels, which shortens the phase 2 → repolarization leads into the closing of Ca²⁺ L-channels
 - the proces is impostant for maintaining the calcium homeostasis in the cell
 - in extreme hypercalcemia, phase 2 may be missing
 - opposite effect may be present in hypocalcemia
- Mechanical effects
 - Extreme hypercalcemia: triggered activity (DAD), systolic arrest (very rare)
 - Extreme hypocalcemia: triggered activity (EAD), hypocalcemic cardiomyopathy, heart failure

Blocking the calcium channels

- Verapamil class IV antiarrhythmic drug
- Tissue distribution roughly symmetrically in the heart and smooth muscle
- Indikace: antiarrhythmic, antihypertenzive (rather rarely), local vasodilatant
- Overdose effect mainly on the slow cells
 - SA arrest and block
 - AV block
 - Low contractility
 - Long QT may sometimes be present

ECG in calcium levels changes

The Ca2+ channels-blockers mainly induce the conduction (SA or AV) node blocks and slower pacemaker function

Practical

