Statistical methods in biology and medicine

Statistics

- Group of mathematical methods concerning the collection, analysis and interpretation of the data
- A complete description of the world is both impossible and impractical (statistics represent a tool for reducing the variability of the data)
- Statistics creates mathematical models of the reality that can be helpful in making decisions
- It works correctly only when the assumptions of its methods are met

Descriptive statistics

- Population-wide works with the data related to whole surveyed population (e.g. census, medical registry)
- Inductive conclusions based on sample data (obtained from a part of the target population) are extrapolated to whole population (assumption: random selection of the sample)

Statistics as a data processing tool

- "raw data" often difficult to grasp
- Descriptive statistics can make the data (of given sample) understandable

kod	cislo	adrenalin	noradrenalin	hypokineza	ERa 397/Pvull	ERα 351/Xbal
TTCBI13-2013	1	354	3643	baze	CT	AG
TTCKE14-2013	2	307	2955	apex	Π	AA
TTCKH15-2013	3	473	6076	apex	СТ	AG
TTCAJ16-2013	4	341	2108	apex	CT	AG
TTCCHM17-2013	5	321	2031	apex	CC	GG
TTCCHS18-2013	6	426	1931	apex	Π	AA
TTCRK19-2013	7	508	1753	difuzni	Π	AA
TTCPD20-2013	8	374	1088	difuzni	CT	AA
TTCMJ21-2013	9	597	1798	apex	CC	GG
TTCPO22-2013	10	420	2856	apex	СТ	AG
TTVVA23-2013	11	367	2657	apex	СТ	AA
TTCNL24-2013	12	327	2467	apex	СТ	AG
TTCJF25-2013	13	395	3929	apex	CC	GG
TTCZM26-2013	14	344	3706	apex	СТ	AG
TTCHJ27-2013	15	426	4225	apex	Π	AA
TTCGT28-2013	16	265	2406	apex	СТ	AG
TTCSB29-2013	17	295	3186	apex	СТ	AG

Kinds of data

- Continuous (always quantitative) the parameter can theoretically be of any value in a given interval (e.g. glucose concentration: 0-∞; ejection fraction: 0-100%)
 - Ratio vs. interval data only differences, but not ratios of two values can be determined (e.g. IQ score)
- Categorical (usually qualitative) the parameter can only be of some specified values (e.g. blood group: 0, A, B, AB; sex: male, female; a disease is present/absent)
 - Ordinal data are categorical, but quantitative (they can be ordered e.g. heart failure classification NYHA I-IV)
 - Count data can be ordered and form a linearly increasing row (e.g. number of children in a family: 0,1,2...) they are often treated as continuous data
 - Binary data only two possibilities (patients / healthy controls)

The distribution of continuous data - histograms

- The distribution of a continuous parameter can be visualized graphically (e.g. using histograms)
- The values usually cluster around some numbers

Description of continuous data

Measures of central tendency

- The arithmetic mean (μ)
 - sum of values divided by their number (n)
- The median (= 50% quantile)
 - cuts the order of values in half
- The mode
 - most frequent value

Measures of variability

- variance (σ^2)
- standard deviation (SD, σ)
- coefficient of variance (CV)

• $CV = \sigma/\mu$

- standard error of mean (SE, SEM = σ/\sqrt{n})
- min-max (= range)
- quartiles
 - upper 25%
 - median
 - lower 75%
- skewness
- kurtosis

The probability distribution of continuous random variable

- Probability density function
- In graphs each (continuously) quantifiable variable (x axis) is linked to its probability (y axis)

Examples of continuous data distribution

Histograms + corresponding probability density functions

Other ways of graphical visualisation

• Box and whisker plots

Instead of median e.g. mean can be used, instead of quartiles ("box") ±σ, instead of range ("whiskers") e.g. non-outlying values... etc.

Normal distribution of the data

- Defined by the Gaussian function $y = a^{-(x-b)^2/2c^2} + d$, where a, b, c, d are real numbers
- Graphical representation is the Gaussian "bell" curve
- mean = median = mode
- A random variable **x** is normally distributed when its value can be interpreted as the sum of an infinite number of independent effects with equal absolute value
- E.g.: throwing a coin, we assign the value of +1 to a head and -1 to a tail. When throwing many times (n→∞), the probability distribution of the resulting value will be normal

Log-normal distribution: after logarithmic transformation of the data, we obtain the Gaussian curve (with the geometric mean at its peak) – an example of data transformation

Normal (Gaussian) vs. symmetric distribution

- Not each symmetric distribution is normal
 - Meeting of several assumptions is necessary
 - interval frequency distribution
 - distribution function
 - skewness = 0, kurtosis = 0
 - Data transformation ("normalization")
 - Creating normal distribution by applying a formula
- Student distribution is an approximation of normal distribution in small datasets

Description of categorical data

- Sumarization of given categories of the dataset (frequency table)
- When more than one categorical parameter is available, we can create contingency tables (and, based on them, we can eventually create graphs)

			Body Image			
_			About Right	Overweight	Underweight	Total
		Female	560	163	37	760
	Gender	Male	295	72	73	440
	5	Total	855	235	110	1200

	Right-handed	Left-handed	Total
Males	43	9	52
Females	44	4	48
Totals	87	13	100

Expression of categorical data variability - examples

- Variation ratio
 - $v = 1 (f_m/N)$, where $f_m =$ number of cases in mode (most frequent) category, N = total number of cases
 - Ratio of all cases except the mode category to the total number of cases
- Shannon-Wiener diversity index
 - Expresses the uncertainty in prediction, to which category will a case belong
 - $H' = -\sum p_i * \ln(p_i)$, where p_i is a proportion of category i from total sample
 - If $p_i = 100\%$ then H' = 0; Higher value corresponds with higher diversity
 - Widely used in ecology, common range between: 1,5 3,5

The level of education (basic, high school, university) is an example of...

- 🖊 A. Ordinal variable
 - B. Interval variable
 - C. Binary variable
 - D. Continuous variable
 - E. Qualitative variable

formulation of statistical hypotheses

- Research hypothesis (e.g. drug A has better effect than drug B, blood pressure decreases during the treatment, there is a correlation between sex and body height etc...) – can be formulated both for an experiment or for an observation
- Testing of research hypothesis uses a proof by contradiction
- For statistical hypothesis testing, a null hypothesis H₀ must be defined (e.g. between two groups, there is no difference in means, there is no difference in variances, there is no correlation between two parameters, a parameter does not change in time...resp. any observed difference is only due to a chance)
- During the testing of null hypothesis, we try to refute it (or, more exactly, to show that it is highly improbable)
- If the null hypothesis, is not true, then its negation must be true alternative hypothesis H_A (there is a difference, there is a correlation...)
- The result of hypothesis testing can thus be:
 - A) non-refutal of the null hypothesis (at certain level of statistical significance α)
 - B) refutal of the null hypothesis favouring the alternative hypothesis

Repetitions - errors in hypothesis testing

	Real nature of the null hypothesis	
Statistical decision	H ₀ true	H ₀ false
H ₀ refuted	type I error (ɑ) = false pos.	Correctl y pos. (1-β)
H ₀ confirmed	Correctly neg. (1-a)	type II error (β) = false neg.

- Type I error rate (α) also **significance level**
- α must be defined before the statistical testing 0.05 is usual in biomedicine (i.e. when H₀ is refuted, there is 95% certainty, that it is really false and the observed difference/correlation is real)
- $1-\alpha$ = specificity of a statistical test
- $1-\beta$ also power of a test (sensitivity of a test)
- P-value probability that the observed result was obtained under the assumption that $\rm H_{0}$ is true
- When p < α, we refute the null hypothesis at a given significance level and the alternative hypothesis is valid
- We say that the difference (effect) is statistically significant (that, of course, does not mean that it has to be significant practically)

P-value

• "A p-value doesn't "prove" anything. It's simply a way to use surprise as a basis for making a reasonable decision."

Cassie Kozyrkov

Statistical tests

- For different statistical hypotheses, different tests are used
- The selection of the right test depends on:
 - the number of compared groups
 - the character of the data (categorical vs. continuous)
 - the distribution of the data
 - mutual dependence of the data

Power of a test...

A. Express its practical (not statistical) significance

B. Increases with increasing variability of the data

C. Express the ability of a test to correctly refute the null hypothesis

- D. Is expressed by a letter p
- E. Is a probability that the alternative hypothesis is true in a case

when the null hypothesis is refuted

Correlation of two continuous parameters

- Mutual dependence of two parameters correlation
- Expressed by correlation coefficient (r)
- r generally express the size of the effect
- r can achieve values in the interval from -1 to 1, where 0 corresponds to no correlation, 1 corresponds to 100% positive correlation (when one factor increases, the other does the same) and -1 corresponds to total negative correlation

- Besides r, the corresponding p-value can be determined (H₀ – the variables are independent)
- Correlation of a categorical vs.
 continuous variable see the "tests for continuous data" (categorical variable define the groups that are compared by the tests)

Examples of correlation coefficients

- Pearson coefficient (parametric) measures linear correlation between variables
 - The main assumption is approximately normal distribution of the data
- Spearman coefficient (non-parametric) measures the rank correlation of the variables
- None of the coefficients can reveal e.g. U-shaped dependence

Comparing the continuous variable in two and more samples

- H₀ there is no difference in the value of the variable between the samples (or is due to chance – e.g. the concentration of glycated hemoglobin in treated and untreated diabetics is equal)
- Generally, central tendency (more often; see further) or variability (e.g. F-test, Levene test) can be tested

Parametric vs. non-parametric tests for continuous data

Parametric

- Use the values
- Have higher power, but only when their assumptions are met (esp. normal distribution of the data in each sample)
- If the distribution is not normal, we can try to transform (normalize) them

Non-parametric

- Use ranks of values
- Power is generally lower (but the difference is small in big samples)
- They are more "robust" their use is not that dependent on data distribution

The normality can be tested by normality tests (e.g. Kolmogorov-Smirnov, Shapiro-Wilks – they compare the real distribution with the normal distribution) and "by eye" evaluation of whether the histograms correspond to Gaussian curve (in small samples, the normal probability plot is a better choice)

Tests for continuous data - paired vs. unpaired tests

Paired (matched samples)

- Used when to each value from sample A, we can match one value from sample B that differs only by its membership in the sample (e.g. comparing salaries in two hospitals: director A director B; head physician A head physician B... up to charwoman A charwoman B)
- Most often, this design is used to assess the change in time (e.g. patients' weight now vs. after 5 years: patient XY and other patients is the same person now as well as after 5 years and differs only by the time difference)
- They assess differences between the samples (or their ranks)

Unpaired (unmatched samples)

- Used in independent samples (they can differ in size)
- They compare the actual values of the variable between the samples (or their ranks)
- It is necessary to decide between the paired or unpaired design before the start of the study (pairing is technically challenging, but paired tests have higher power)

One-tailed vs. two-tailed tests

One-tailed

- H₀ is asymmetric: e.g. drug A is not better than drug B – but we are not interested whether it is or is not worse
- They have higher power

Two-tailed

- H₀ is symmetric: there is no difference between drug A and drug B (i.e. A is neither better nor worse than B)
- They can reveal the differences in both ways
- They are usually more suitable we don't know the result a priori, and we are interested in both possible effects

Tests for continuous data, 2 samples – examples

Test	Parametric	Non-parametric
Paired	Paired (dependent) Student's t-test	Wilcoxon paired test Sign test
Unpaired	Unpaired (independent) Student's t-test	Mann-Whitney U-test * Kolmogorov-Smirnov test

• * has almost the same power as unpaired t-test, but it has an assumption of similar variability in both samples (as well as t-test)

Tests for continuous data, more than 2 samples – examples

Test	Parametric	Non-parametric
Paired	Repeated measures ANOVA (Analysis Of VAriance) – RMANOVA	Friedman test ("ANOVA")
Unpaired	One-way ANOVA (and its variants)	Kruskal-Wallis test ("ANOVA")

• When ANOVA rejects H₀, it is necessary to find out which specific samples differ from each other – post hoc tests

Choose the best test

In a clinical trial, patients take either a new drug to treat epilepsy or a placebo. The study is randomized (the study group is randomly drawn). Only patients, which have at least one and at most ten seizures in three months are included. The study evaluates a number of seizures during the first year of treatment

- A. Paired t-test
- B. Unpaired t-test
- C. Mann-Whitney U-test
 - D. Sign test
 - E. Repeated measures ANOVA

