MUNI MED

Antidiabetic drugs

Department of Pharmacology MF MU

Antidiabetic drugs

Insulins

Drugs used in T2DM

Diabetes mellitus

 $M \vdash D$

chronic multifactorial endocrine and metabolic disease

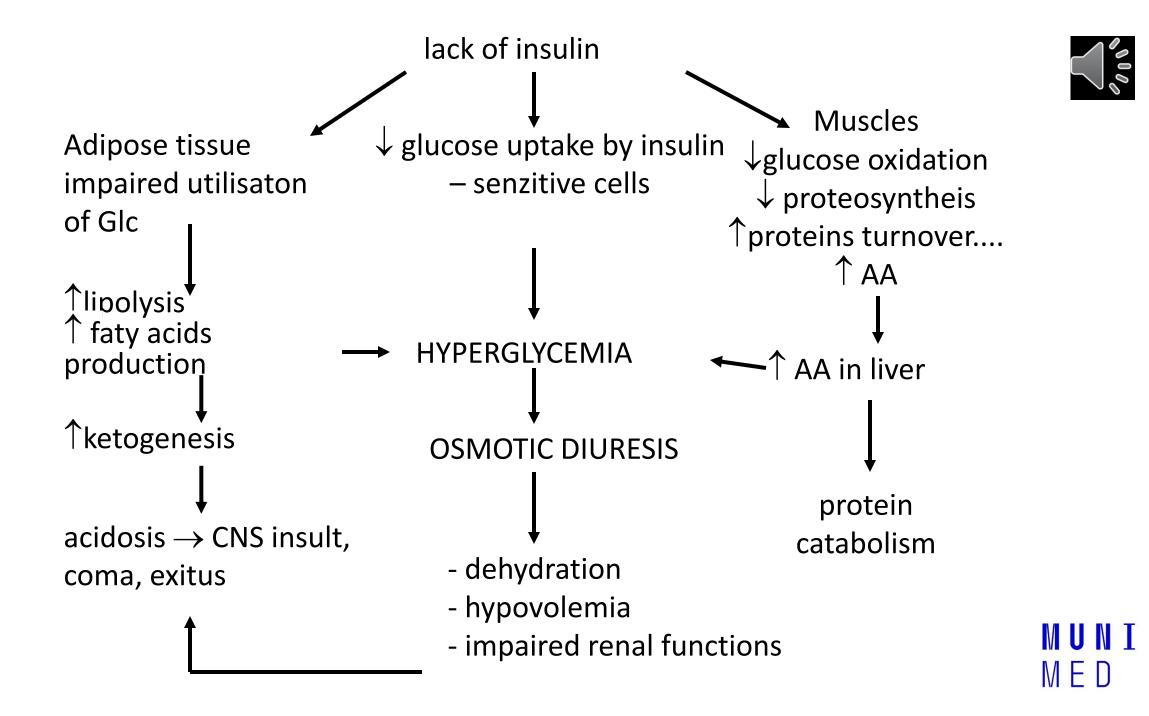
DM I. type (IDDM) absolute deficiency in insulin (10 - 15 %)

- infections or toxic effect on pancreas
- autoimmune

DM II. type (INDDM) relative deficiency in insulin (85 - 90 %)

MED

Clinical picture


Polyuria, polydypsy, nighttime urination, weight loss in normal appetite, physical weakness, fatigue, blurred vision, coma (children)

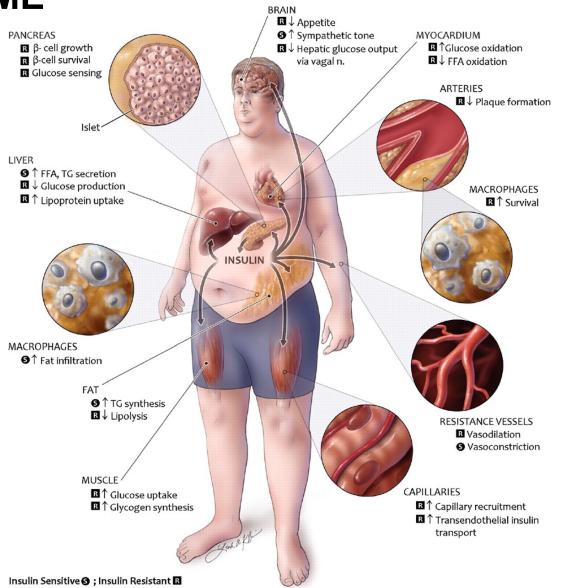
Randomly detected glycemia above 11.1 mmol / L Fasting glycaemia above 7.0 mmol / L

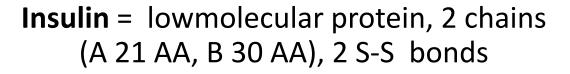
T1DM - symptoms are more pronounced, develop quickly (weeks)

T2DM - less noticeable symptoms, evolving from months to years

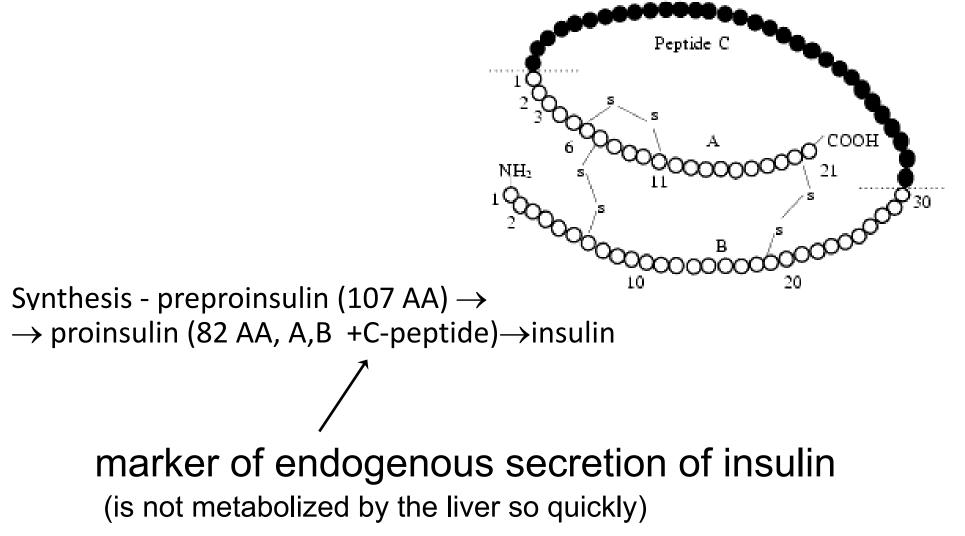
- other - related to organ complications - itchy skin, visual disturbances, pain and tingling, neuralgia, badly healing wounds, skin affections, tooth decay, potency disorders, libido ...

METABOLIC SYNDROME


Insulin resistance


Hypertension (high blood pressure)

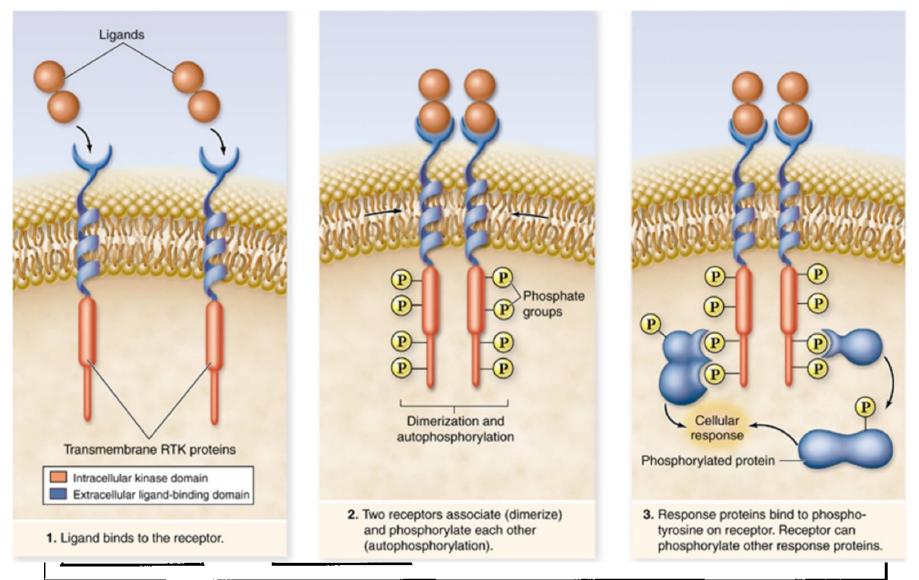
Hypertriglyceridaemia (elevated TAG)


Disorders of glucose tolerance or diabetes

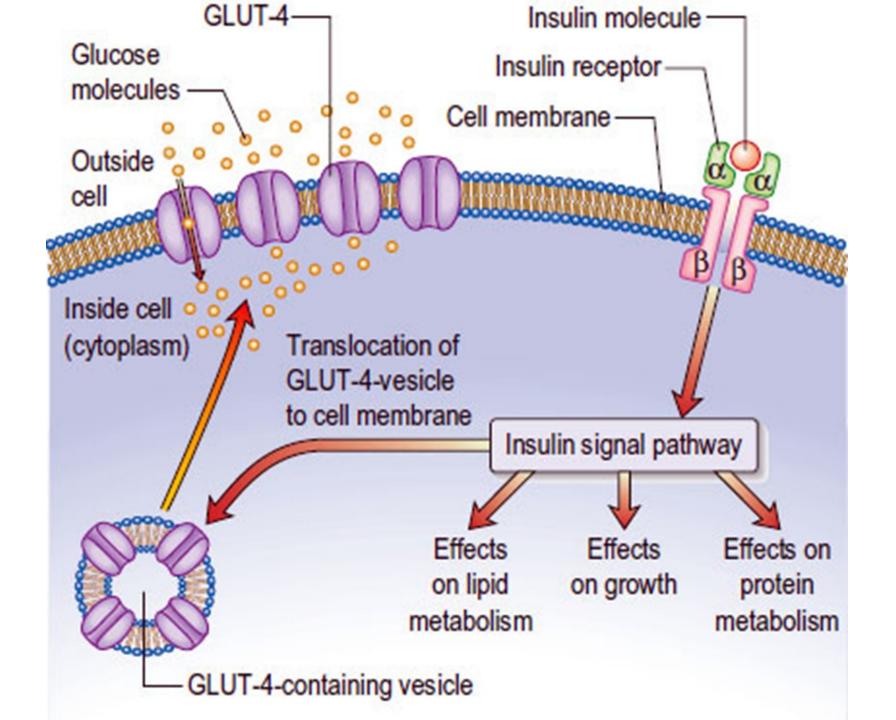
Obesity type of apple (male type of obesity)

Factors decreasing insulin secretion

somatostatin


insulin (negative feedback)

 α - activation of sympathetic n.s. (adrenalin)


Insulin receptor

MUNI MED

Lincová a kol. 2002

MUNI MED

100

Types of insulin

A) animal insulin - from pork or beef pancreas, highly pure, monocomponent, today only AUV

B) human insulin - produced biosynthetically (synthetically since the 1960s, biosynthetically from 70 years, commercially since 1982) is called HM

C) insulin analogues- biosynthetically prepared, spec. Properties - length of action (short, prolonged effect)

- the production of antibodies to insulin depends on the purity

 $M \vdash D$

Terapeutical use of insulin

- DM I. Type
- ketosis, ketonuria or ketoacidosis
- patients with serious infetion/gangrene

- DM II where blood Glc. not normalized with POAD, diet
- DM II patients, use corticosteroids, liver or kidney impairment

Insulin preparations

solutions/suspensions of insulin

suspesions of "zinc-insulin"

suspensions "protamin-zinc-insulin"

 Σ insulin as a mixture of mono-/di-/tetra-/hexamers + pH, stability, isotonicity adjusted

 $M \vdash D$

Insulin preparations

Short acting

A) insulin analogues: insulin lispro, aspart, glulisine
 Can be administered intravenously
 Start of operation 0-15 min.
 Maximum of efficacy 30-45 min after admin.
 Effective for 2 - 5 hours.

 B) neutral aqueous solutions of insulins (Crystalline insulin, soluble insulin)
 Can be administered intravenously
 Start of action 30 min.
 Maximum 1 - 3 hours.
 Effective for 4 - 6 hours. **Intermediate acting**

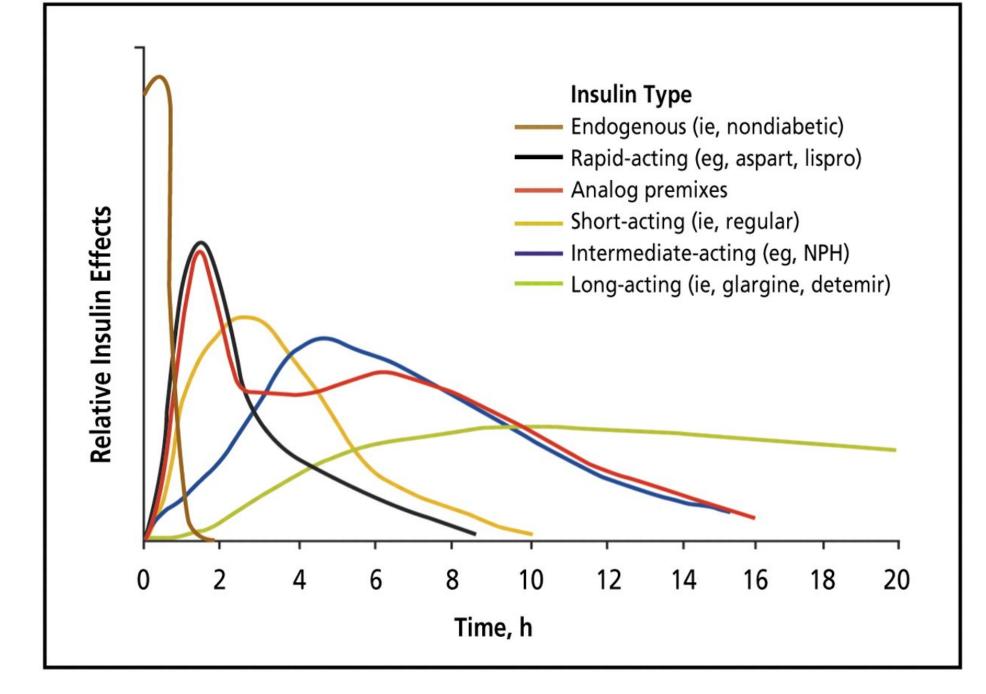
NPH (Neutral Protamine Hagedorn)

Protamine insulins or mixtures of amorphous and crystalline forms of insulin in a ratio of 30:70

Start of operation 1 - 2.5 hours

Maximum 4 - 8 hours.

Working time 12 - 24 hours.


Almost no longer used

Long acting

Crystalline suspensions of large crystals with very slow absorption Analogs and their conjugates (glargin, detemir, degludec) Onset of effect 2 - 3 hours Maximum 10-18 h (not apparent in degludec) Effective for 24 - 36 hours. Steady state after 3 days (3 doses)

Less hypoglycemia than NPH, less weight gain

Complications of insulin therapy

MUNI

MED

- hypoglycaemia

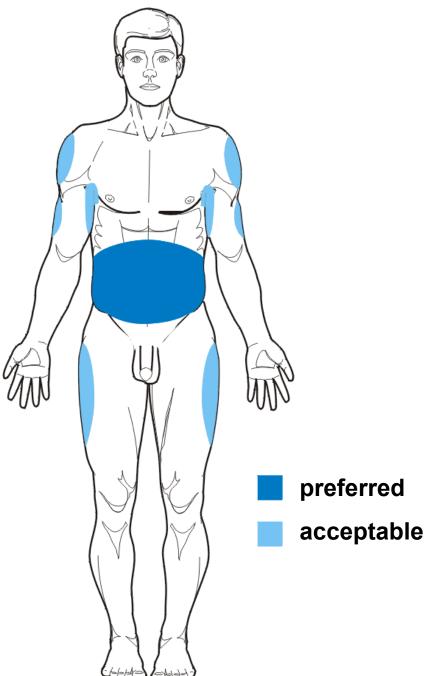
- allergy

- lipodystrophy

insulin resistance - spec. antibodies

weight gain

Delivery systems (self-administration)


1) Insulin pen - cartridge with extendable needle; In the form of a fountain pen

2)Insulin pumps - continuous infusion s.c. (better compensation, less infectious risk)

3)Insulin syringes - with a sealed needle, calibrated per unit

4) Inhalation (USA) / transnasal ?

Insulin administration sites



MED

Hypoglycaemia - below 2.8 mmol / l

Causes : - overdose with insulin - delayed food intake, vomiting, diarrhea - excessive physical load (delayed hypoglycaemia) In the elderly, liver, kidney, cardial insufficiency

Rapid onset of symptoms: nervousness, tremor, palpitations restlessness, hunger, sweating, consciousness disorders, changes in EEG, coma, exitus

Therapy: Saccharide / glucose delivery p.o./i.v. (40% glucose, 30-50 ml or more)

Glucagon, followed by glucose

Antidiabetics

Criteria for initiation of pharmacotherapy of DM II type and suitable selection of drug

- OAD do not replace regimen (diet)
- age, weight, blood insulin level
- glycemia (fasting and postprandial)
- comorbidities, metabolic syndrome

MED

(Oral) antidiabetics

The effect is linked to the ability of insulin secretion

Most OAD are contraindicated in pregnancy (metformin may be used)

- indication:

- T2DM - if not properly compensated with diet

- T1DM with a high insulin resistance, when insulin does not lead to a sufficient decrease in blood glucose

MED

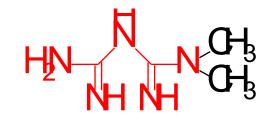
Antidiabetics

biguanides

□ sulfonylurea derivatives (SU)

□ thiazolidindiones

□ alpha-glucosidase inhibitors


meglitinides

□GLP1 analogues

□ Inhibitors of DPP IV

□ SGLT2 (sodium-glucose cotransporter) inhibitors

MED

fenformin

metformin

Mechanism of action

buformin

- increase sensitivity of peripheral tissues to insulin
- increase insulin binding to its receptor
- reduce hepatic gluconeogenesis
- decrease glucose absorption from GIT

Do not affect insulin secretion, function of B cells \rightarrow no hypoglycemia

"euglycemic agents"

Further benefits:

Direct stimulation of glycolysis in the periphery
Reduce hepatic gluconeogenesis
Delay Glc absorption from GIT
Decrease plasma glucagon levels
Increase the proportion of HDL Chol. → improve lipid profile
Improve rheological properties of blood
Are not metabolized, low protein binding

Side effects

Lactic acidosis

Nausea, GIT problems about 20% of people (diarrhea)

Reduced absorption vit. B12

Weight loose

disulfiram effect

mechanism of action

Tolbutamide

- 1) pancreatic release of I. from beta cell
- 2) extrapankreatic
- potentiation of endogenous I effect on the target tissue
- reduction of hepatal glucose production
- reduction of hepatal Insulin degradation
- reduction of serum glucagon levels

SU derivatives

MUNI

MED

I. Generation -chlorpropamide tolbutamide II. Generation - glibenclamide (gliburide) glipizide gliclazide gliquidone III. Generation - glimepiride

Therapeutic use: not drugs of choice, 2nd line treatment

Adverse effects

- increased appetite
- metal taste in mouth
- Hypoglycemia
- headaches, nausea (5 %)
- fluids retention
- allergy, fotosensitivity

Contraindications

DM Type 1 monotherapy, hypoglycemia,

ketoacidosis, kidney or liver failure

pregnancy, hypersensitivity

Thiazolidinediones

rosiglitazon pioglitazon troglitazon Mechanism of action

• increase the sensitivity of periphery to insulin

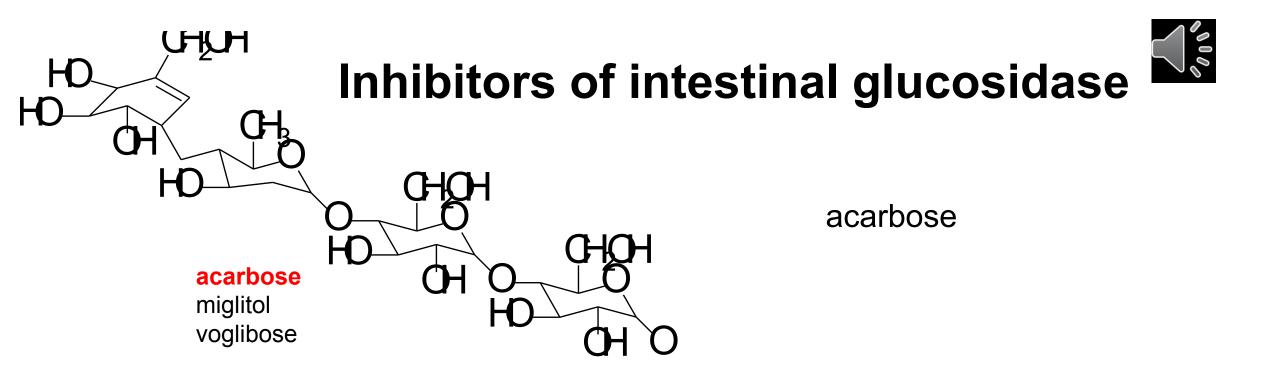
- ligands of PPAR γ (part of the steroid and thyroid superfamily of nuclar receptors) modulate the expression of the genes involved in the metabolism of lipids and glucose

Thiazolidindiones

- Lowering blood glucose by the primary effect on insulin resistance in diabetic and pre-diabetic patients
- Does not cause hypoglycemia, scavengers
- Increase glycogen synthesis and glycolysis in muscles
- Stimulating glucose oxidation and lipogenesis in adipose tissue and reducing gluconeogenesis in the liver ... optimal metabolic effects

Therapeutic use

Sensitizers of insulin receptors The onset of effect in 4 weeks


Side effects

Hepatotoxicity Fluid retention Increase TAG

Contraindications

Hypersensitivity Predisposition to heart failure Liver damage Pregnancy, lactation

Mechanism of the action

- reduce sacharides absorption from GIT
- competitive inhibition of the gut α glucosidases

(inhibits the cleavage of the polysacharides from the meal)

Inhibitors of intestinal glucosidase

- decrease postprandial glycemia
- do not affect monosacharides absorption
- acarbosis do not rech the systemic blood, miglitol does
- "educative drugs"- consequences in bad compliance

In hypoglycemia and the simultaneous treatment with other POADs can not be administered sucrose (monosacharide necessary - Glu, Fru) or Glucagon

Meglitinides

repaglinid

nateglinid

meglitinid

Mechanism of the action

similar to SU-derivatives:

block ATP- sensitive K⁺ channel in membrane of betacells, depolarisation of membrane, activation of voltage-gated Ca²⁺ channel, influx Ca²⁺, insulin release

through different receptor at K⁺ channel

Clinical use

- combined with metformin esp. if patient not suffciently compensed
- alternative of the SU medication in patients with renal impariment (excreted in bile)

Contraindications:

AE:

Hypoglycemia, nausea, diarrhea, joint pain

- hypersensitivity
 - ivity
- DM I. type
- diabetic ketoacidosis
- pregnancy, lactation

DM - Complications

1) hypoglycemia

consciousness - sweet (sacharide) drink,
 meal
unconsciousness - i.v. Glu 20-40%
 - u DM I. type i.v. glucagon

DM - Complications

2) allergy (hypersensitivity IgE) - corticosteroids, adrenalin i.v.

3) insulin resistance - IgG against insulin (animal insulins), change insulin preparation, POAD

4) lipodystrophy - change application sites (scheme), esthetic surgery

 $M \vdash D$

DM - Complications

Diabetic nefropathy - hypertrophy, hyperfiltration; → nefropathy, ↑blood pressure (ACEi), microalbuminuria, insufficiency

Diabetic neuropathy - gabapentin, pregabaline, carbamazepine, TCA, duloxetine

Hyperlipoproteinemia - diet, statins, fibrates, probucol, nicotinic acid...

MED

DM - Complications

Diabetic retinopathy - protein glycation, small vessels collagenisation; microangiopathy

Diabetic foot - micro- and macrovascular impairments

a) neuropatic - warm, non-sensitive, dry, complicated with neuropathic ulcer oedema

b) ischemic - cold, without pulsations

c) neuroischemic - ulcerations, gangrene

DM - Complications

relapse of infections, mycosis

hypertension

