Endocrine versus exocrine pancreas

Pancreatic islets represent 1 - 2 % of pancreas, but blood flow through them represents 10 - 15 %.

Insulin

Characteristics

- Polypeptide
- Secretory granules free insulin and C-peptide
- Two types of secretory granules:
 - Quickly secretable (5 %)
 - Reserve pool (95 %)
- Half-time 3 8 min
- Degradation liver (up to 50 %), kidneys, target tissues (insulin proteases)

Insulin secretion

Secretion of insulin is pulsatile and shows rhytmicity. Stimulation of insulin secretion by glucose is biphasic. Glucose exhibits incretin effect.

Insulin secretion – "normal" and obese

Regulation of insulin secretion

β cells = neuroendocrine integrator, response to:

- Plasmatic concentrations of substrates (AA, Glu)
- PC of hormones (insulin, GLP-1, somatostatin, adrenaline)
- PC of neurotransmitters (noradrenaline, acetylcholine)

Glu

Main mechanism!

AA – Leu, Arg, Lys

- Generation of ATP
- Direct depolarization of plasmatic membrane

Modification of mRNA translation

- Glu – (+) mRNA

Other: - GH, VIP, secretin, gastrin, glucocorticoids, prolactin, placental lactogene, sex hormones

Glucose is the main stimulus for insulin secretion. Glucose has a permissive effect on secretion of other insulin secretion modulators.

Insulin receptor

Characteristics

- 2 α and 2 β subunits
- TK activity
- Phosphorylation of IRS 1-4 (insulin receptor substrate)
- Interaction with other cell substrates
- PI3K (phosphatydylinositol-3-kinase)
- MAPK (mitogen-activated protein kinase)

 α subunits =

 β subunits = TK activity

Ligand binding

Number of available IR is influenced by exercise, diet, insulin itself and by other hormones. Obesity and chronic hyperinsulinemia causes significant decrease in number of IR, exercise and starvation significant increase in number of IR.

Physiologic effects of insulin

Immediate effects

- Seconds
- Modulation of K+ and Glu transport

Early effects

- Several minutes
- Regulation of metabolic activity

Medium-term effects

- Minutes to hours
- Regulation of metabolic activity

Delayed effects

- Hours to days
- Cell growth
- Cell differentation

Effect of insulin on target tissue is anabolic and is mediated by insulin receptor.

Immediate effects of insulin on target tissues

	Utilization of glucose	Transporter	Expression	Function
	 Approx. 40 % of glucose in body Approx. 80 – 90 % skeletal muscles Adipose tissue - adipocytes GLUT4 While GLUT1 is responsible for basal uptake of glucose by skeletal muscles and adipocytes, GLUT4 is stimulated by insulin and is	GLUT1	 Ubiquitous Ery, endothelial cells (CNS), placenta, kidneys, colon Skeletal muscles and adipocytes 	- Basal uptake of Glu
		GLUT2	 β cells of pancreas Liver, small intestine, kidneys 	 Glu sensor Uptake of Glu during high concentrations of circulating Glu
		GLUT3	Primarily neuronsPlacenta, liver, epithelial cells of GIT	Basal uptake of GluEssential role in CNS
respo upta	responsible for insulin-stimulated uptake of glucose.	GLUT4	Skeletal muscles and adipocytesVesicles!	 Insulin-stimulated uptake of Glu
		GLUT5	- Jejunum, sperms	- Transport of Fru

Utilization of glucose is the main immediate effect of insulin.

Early and medium-term effects of insulin

- Determined by phosphorylation of enzyme connected to metabolic pathways.
- Skeletal muscles, adipose tissue, liver

Production of ketone bodies (-)

- Dephosphorylation of hormone-sensitive lipase = inhibition of triglyceride utilization
- Activation of acetylcoenzyme A carboxylase (lipogenesis)
- Antagonization of catecholamines effect on lipolysis

Utilization of glucose

- liver
- Stimulation of expression of enzymes connected to Glu utilization (glucokinase, pyruvate kinase) and lipogenic enzymes
- Inhibition of enzymes connected to Glu production (phosphoenolpyruvate carboxykinase, glucose-6-phosphatase)
- Synthesis of glycogen
- Inhibition of production of keto bodies

Insulin and skeletal muscles

- (+) uptake of glucose (GLUT4)
- (+) glycogen synthesis
- (+) transport of AA
- (+) translation of mRNA
- (-) degradation of proteins
- (+) preference of fat reserves
- mechanism mTOR phosphorylation

Insulin and liver

Fed-state versus fasted-state

Hypoglycemia

- (-) insulin secretion
- (+) glucagon and adrenaline secretion (liver)
- (+) GH and cortisol (decreased utilization of Glu)

Neurogenic

Neuroglycopenic

Warm Weak Difficulty thinking/confused Tired/drowsy Faint Dizzy Difficulty speaking Blurred vision

Catecholamines and glycaemia

Vegetative nervous system represents an important mechanism preventing hypoglycemia.

Adrenaline prepares body to immediate performance, it mobilizes energetic substrate – glucose – as a source of energy.

Diabetes mellitus type 1

DM1 is associated with mobilization of substrates for gluconeogenesis and ketogenesis from muscle and adipose tissue, increased gluconeogenesis and ketogenesis in the liver, as well as disturbed substrate intake by peripheral tissues.

Diabetes mellitus type 2

Clinical relevance

Insulin resistance

Mutation in IR gene

Defects in insulin secretion

- Mutation in insulin gene (proinsulin)
- Mutation in mitochondrial genes
- MODY (Maturity-onset diabetes of the young)
 - HNF-4α (MODY 1)
 - Glucokinase (MODY 2)
 - HNF-1α (MODY 3)
 - IPF1 (MODY 4)
 - HNF-1β (MODY 5)
 - NeuroD1/BETA2 (MODY 6)

DM2 is multifactorial disease connected with resistence of peripheral tissues (muscles, adipose tissue) to insulin, disturbed insulin secretion (under glycemia influence) and increased glucose production in liver.

What are the consequences of DM?

Proteins

- Protein catabolism
- Negative nitrogen balance

Lipids

- Lipid catabolism with production of ketone bodies
- Decreased synthesis of FA and triglycerids
- Increased concentration of free FA
- FA catabolism, production of ketone bodies

Hyperglycemia

- Glycosuria, osmotic diuresis and polyuria
- Increased plasma osmolality, polydipsia, ADH
- Dehydratation
- Decreased blood pressure and volume of ECF
- Polyphagy

Ketoacidosis

- Metabolic acidosis
- Hyperventilation
- Acidification of urine
- Hyperkalemia

Glucagon

Characteristics

- Peptide hormone (29 AA)
- Syntesized as proglucagon
- Pancreas
- Enteroendocrine cels in GIT
- CNS
- Alternative splicing creates other peptides, most important GLP-1
- Short half-life (5 10 min)
- Degradation in liver

Secretion

- (+) AA
- (+) hypoglycemia

Receptors

 Liver, β cells, kidneys, heart, adipose tissue, blood vessels, CNS, stomach, adrenal glands

Functions

 Glucose homeostasis – insulin antagonism

Proglucagon – alternative splicing

Glicentin – L-cells (small intestine)

- Stimulation of insulin secretion
- Inhibition of stomach secretion
- Trophic effect in intestine

Oxyntomodulin – colon (anorexigenic factor)

- Postprandial secretion
- Increased energy expandituree
- (+) glucose tolerance

GRPP

(inhibition of Glu-stimulated insulin secretion, modulator of energy metabolism)

IP-1, IP-2 L-cells (modulation of insulin secretion?)

GLP-1 and GLP-2

Charakteristics

- Neuroendocrine L cells

Functions – GLP-1 (GLP1R)

- (+) insulin secretion
- (-) glucagon secretion
- (+) neogenesis and proliferation of pancreatic isles
- (-) β cell apoptosis

Functions – GLP-2 (GLP2R)

- (-) antrum motility
- (-) of gastric juice secretion stimulated by food
- Trophic effect (small intestine, colon)
- (-) enterocyte apoptosis
- (+) blood flow and nutrient absorption

CNS

- Caudal NTS viscerosensoric information
- Activation of POMC neurons
- Inhibition of food intake (anorexigenic factor)
- Induction of satiety

= quick modification of food intake based on metabolic substrates (glucose), hormones (leptin) and neuropeptides.

Clinical relevance

- Agonists of GLP1R treatment of DM2
 - Exenatid, lixisenatid
 - Liraglutid
 - Albiglutid, dulaglutid
- Inhibitors of dipeptidyl peptidase 4 (DPP4)
 - sitagliptin, vildagliptin, saxagliptin, alogliptin, linagliptin
 - DM2

GLP-1 and GLP-2 show incretin effect preparing insulin secretion in dependence on glucose presence in GIT lumen.

Glucagon – secretion and its regulation

Glucagon secretion requires depolarizing cascade which ends with Ca²⁺ influx and glucagon secretion.

Physiological effects of glucagon

Target enzyme	Metabolic response	↓ Insulin:glucagon		
+) Glu-6-phosphatase Glu entering circulation expression		Hepatocyte		
(-) glucokinases	Lower rate of Glu entering glycolytic cascade	THSL FFA β-oxidation		
(+) phosphorylation (activation)of glycogen phosphorylase	Stimulation of glycogenolysis	Adiacente Glycerol Acetyl CoA		
Inhibition of glycogen synthase Inhibition of glycogen synthesis		Adipocyte		
Inactivation of phosphofructokinase 2, activation of fructose-6- phosphatase	Inhibition of glycolysis, stimulation of gluconeogenesis	Acetyl coenzyme A Oxaloacetate Citrate Krebs		
Inhibition of pyruvate kinase	Inhibition of glycolysis	cycle co ₂ Acetone		

Other effects

- Stimulation of phosphorylation (activation) of hormone-sensitive lipase and lipolysis substrates for gluconeogenesis and antibody production
- FFA as a source of energy mainly for skeletal muscles

Target organ for glucagon effect is liver, where it stimulates gluconeogenesis and glycogenolysis, thus increasing glycemia.

Integration of system insulin - glucagon

Somatostatin

Characteristics

- Peptide hormone (14 AA)
- Secretion stimulated by:
 - food rich in lipids (FFA)
 - food rich in saccharides (Glu)
 - food rich in proteins (AA Leu, Arg)

Role of paracrine cholinergic signaling in somatostatin secretion – paracrine effect of acetylcholine stimulates insulin secretion, but also secretion of somatostatin.

Functions

- Paracrine effect (-) insulin, glucagon, PP
- Inhibition of practically all exocrine and endocrine GIT functions
- Inhibition of motility

Clinical relevance

- Somatostatin analogues and insulin/glucagonproducing tumors

Pancreatic polypeptide - PP

Characteristics

- Peptide hormone (36 AA)
- Secretion stimulated by:
 - Food (proteins), distention of stomach
 - Exercise
 - Direct vagal stimulation
 - Insulin-induced hypoglycemia
- Secretion inhibited by:
 - Hyperglycemia
 - Bombesin, somatostatin
- Receptors:
 - Stomach, small intestine, colon, pankreas, prostate, enteric NS, CNS

Functions

- Inhibition of pancreatic exocrine secretion
- Inhibition of gallbladder contraction
- Modulation of stomach secretion
- Modulation of stomach motility
- Regulation of food intake?

Pancreatic polypeptide stimulates energy consumption through sympathetic stimulation of brown adipose tissue. It also modulates secretion of CCK and inhibits ghrelin secretion.

Amylin

Characteristics

- Peptide hormone (37 AA)
- $-\beta$ cells, stomach, proximal small intestine
- Posttranslational modification (amidation)
- Secretion together with insulin and C-peptide
- Increase after application of:
 - p.o. and p.e. glucose

Function

- Slowing of emptying of stomach on vagal basis
- Inhibition of glucagon secretion (postprandial)
- Muscles
 - Inhibition of glycogen synthesis
 - Stimulation of glycogenolysis, glycolysis and lactate production

Clinical relevance

- Increased plasmatic concentration during obesity, gastric diabetes and DM2
- Analogue of amylin DM1 and DM2 therapy (pramlintid) amylin-deficient states

