MUNI NED

MUNI MED

Introduction to neurophysiology Cellular base of nervous system Synapse

Kamil Ďuriš

Department of Pathological Physiology (A18) kduris@med.muni.cz

MUNI

MED

3 Introduction-cellular base-synapse

Why and how to **STUDY** neuroscience

MED

What is nervous system good for?

Unicellular organism

- One cell has to do everythinglower effectivity
- Total dependence on environment
- High level of stress
- Short life time

Multicellular organism

 Functional specialization of particular cells – higher effectivity

 $\mathbf{N} = \mathbf{I}$

- Inner environment homeostasis
- Lower level of stress
- Longer life time

- Essentials for survival of multicellular organism
- Maintaining homeostasis
 - The composition of inner environment
 - The integrity of organ/ bodily barriers
- Coordination of bodily functions
 - To receive signals from outer and inner environment
 - To process this information
 - To respond in a coordinate manner to these stimuli

/	Integration	\mathbf{i}
Input		Output
REGULATION		

- Regulation
 - Nervous
 - Humoral

- Regulation
 - Nervous
 - Humoral

http://biology.about.com/od/anatomy/p/Hypothalamus.htm

MED

Central nervous system controls both types of regulations

Humoral regulations

- Hormone
- Non-specific channel of conduction (blood stream)
 - Target site defined by specific receptor

Nervous regylations

- Neurtransmitters
- Specific channel of conduction
 - Target site defined by infrastructure

 $M \vdash D$

Humoral regulations

- Hormone
- Non-specific channel of conduction (blood stream)
 - Target site defined by specific receptor
 - Low energetical demands
 - Slow
 - Long duration

Nervous regylations

- Neurtransmitters
- Specific channel of conduction
 - Target site defined by infrastructure
 - High energetical demands
 - Fast
 - Short duration

 $M \vdash D$

MUNI Med

12 Introduction-cellular base-synapse

MUNI MED

MED

14 Introduction-cellular base-synapse

Evolutionary approach

 Evolutionary old structures have not been replaced by new ones during evolution, but the old has been kept and the new added

Evolutionary approach

- Evolutionary old structures have not been replaced by new ones during evolution, but the old has been kept and the new added
- Evolutionary younger structures were associated with new functions or with the improvement in existing functions

Evolutionary approach

- Evolutionary old structures have not been replaced by new ones during evolution, but the old has been kept and the new added
- Evolutionary younger structures were associated with new functions or with the improvement in existing functions
- It is important to ask what is any particular function good for and how it has been improved in course of evolution

MUNI MED

Evolutionary approach Evolution is not revolution

MUNI Med

18 Introduction-cellular base-synapse

Evolution of the nervous system

Input — Integration — Output

Gerald Schneider. *9.14 Brain Structure and Its Origins, Spring 2014*. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed). License:Creative Commons BY-NC-SA

MUNI MED

Evolution of the nervous system

Input — Integration —

A. Myoepithelium: contractile epithelial cells responding to stimulation and interconnected by electrical synapses (gap junctions)

B. Protomyocytes separate from sensory epithelium, all connected by electrical synapses

→ Output

D. Neurons appear, separate from both neurosensory cells and contractile cells. Chemical synapses appear.

MED

C. Protoneurons appear, sensory and connected to separate contractile cells

Gerald Schneider. *9.14 Brain Structure and Its Origins, Spring 2014*. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed). License:Creative Commons BY-NC-SA

Evolution of the nervous system

Gerald Schneider. *9.14 Brain Structure and Its Origins, Spring 2014*. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed). License:Creative Commons BY-NC-SA

MUN]

MED

Compartmentalization

- Cellular specialization leads to compartmentalization on several levels
 - Tissue level
 - Organ level
 - Organ system level
- There are barriers in between compartments
- Properties/content may vary among different compartments

Compartmentalization

 $M \in D$

Intracranial compartment

sinus

Subarachnoid

space

- ✓ "Very specific region"
- ✓ Brain
- ✓ Cerebrospinal fluid
- ✓ Blood (intravasculary)
- **Barriers** \checkmark
 - Meningeal ۲
 - Hematoliquor •
 - Hematoencephalic ullet

Hematoencephalic barrier

- Highly organised structure
 - Endothelial cells (low permeability thanks to zonlua occludens)
 - Basal membrane
 - Astrocytes
 - Pericytes

https://upload.wikimedia.org/wikipedia/commons/1/12/Blood_vessels_brain_english.jpg

Circumventricular organs

- Rich vascularisation
- Modified hematoencephalic barrier
- Sensors
- Secretion

The circumventricular organs

http://www.neuros.org/index.php?option=com_photos&view=photos&oid=hafizbilal

MUNT

MED

Cerebrospinal fluid

- Content
 - ✓ High levels of Mg^+ and Na^+
 - $\checkmark~$ Low levels of K⁺ and Ca²⁺
 - ✓ Almost no cells (max 5/ml)
- Function
 - ✓ Protection
 - ✓ Microenvironment of neurons and glia
 - Metabolic function
 - Immunologic function
 - Transport function and so on

http://www.control.tfe.umu.se

MUNI

MED

Cerebrospinal fluid

- Clear fluidproduced by active secretion
- Liquor space
 - lined by ependymal cells
 - ≻ 150-250 ml
- Production
 - ✓ Plexus choroideus (PCh) -70%
 - ✓ Cell metabolism
 - ✓ Cappilary filtration
 - ➢ 450-750 ml/day
- Resorbtion
 - ✓ Archnoid granulations (AG)

http://www.control.tfe.umu.se

MUNI MED

Intracranial compartment

- Brain
- Cerebrospinal fluid
- Blood (intravasculary)
- Intracranial pressure (ICP)
 - Critical determinant of cerebral perfusion
- Cerebral perfusion pressure (CPP) pressure gradient driving blood flow intracranialy

!!! CPP = MAP – ICP !!!

Cerebral perfusion pressure Intracranial pressure Mean arterial pressure MUNI MED

Cellular base of nervous system Synapse

30 Introduction-cellular base-synapse

Cellular base of nervous system

- Neuronal cells
 - Reception, integration and propagation of information
 - Unique, irreplaceable
- Neuroglial cells
 - Support for neuronal cells
 - Easily replacable
- The total amount of neuronal cells 100 billions (10¹¹)
- Neruon/glia ratio
 - 1/10 50 (Principles of Neural Science, 4th ed., 2012)
 - 1/2 10 (Principles of Neural Science, 5th ed., 2012)
 - 1/1 (Nolte's Human Brain, 7th ed., 2015)

Neuroglial cells

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune function
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining
 - (liquro-encephalic barrier)
- 32 Introduction-cellular base-synapse

Peripheral nervous system

- Satelite cells
 - Support functions in PNS

- Schwan cells
 - Myelin sheat

http://www.slideshare.net/drpsdeb/presentations

MED

Background Activity

https://upload.wikimedia.org/wikipedia/commons/e/ed/Neuron_Cell_Body.png

MUNI

MED

Background Activity

Background Activity

Fast axonal transport

- bidirectional
- ATP dependant
- associated with microtubules:

dynein and kinesin

Fast axonal transport

36

Golgi derived vesicles lysosmes, mitochondria structural elements of endoplasmic reticulum

Slow axonal transport

- unidirectional,
- ATP independant
- conducted by sliding, polimerizing and protein interacting

Slow axonal transport

microfilaments, microtubules neurofilaments cytosolic protein complexes

http://www.oapublishinglondon.com/images/article/pdf/1397255957.pdf
Membrane potential

• Due to differences in the concentrations of ions on opposite sides of a cellular membrane

http://www.slideshare.net/drpsdeb/presentations

Resting membrane potential of a neuron

- Highly instable state of membrane
- Why? Speed!
- High energetical demands
 - ✓ Oxygen 20% of total body consumption
 - ✓ Glucose 25% of total body consumption

Action potential

Quick voltage change on the membrane ٠

Dendrites

Cell-body

Presynaptic.

Synaptic

cleft

axon terminal

Postsynaptic dendrite

Synapse

- Spreads along the axon ٠
- All or nothing principle ۲

Introduction-cellular base-synapse 39

Resting potential

around -70 mV

Treshold potential around -55 mV

Action potential spreading

http://www.slideshare.net/drpsdeb/presentations

Saltatory conduction

- Myelin sheat
- Nodes of ranvier
- Economy
- Speed of conduction
- Speed of conduction also dependent of nerve fibre diameter
 - the electrical resistance is inversly proportional to area of crosssection

Classification of nerve fibers

- In humans mostly myelinated
- All fibers are myelinated in CNS
- Non-myelinated are evolutionary old ones

http://neuroscience.uth.tmc.edu/s2/chapter04.html

Neuronal classification

Basis for classification	Example	Functional implication	Structure
3. Number of processes One process exits the cell body	Unipolar neuron (dorsal root ganglion cell)	Small area for receiving synaptic input: highly specialized function	Unipolar
Two processes exit the cell body	Bipolar neuron (retinal bipolar cell)	Small area for receiving synaptic input: highly specialized function	Bipolar Multipolar
Many processes exit the cell body	Multipolar neuron (spinal motor neuron)	Large area for receiving synaptic input; determines the pattern of incoming axons that can interact with the cell	Multipolar

Neuronal classification

Basis for classification	Example	Functional implication	Structure
2. Dendritic pattern Pyramid-shaped spread of dendrites	Pyramidal cell (hippocampal pyramidal neuron)	Large area for receiving synaptic input; determines the pattern of incoming axons that can interact with the cell (i.e., pyramid-shaped)	Pyramidal cell
Radial-shaped spread of dendrites	Stellate cell (cortical stellate cell)	Large area for receiving synaptic input; determines pattern of incoming axons that can interact with the cell (i.e., star-shaped)	Stellate cell

MUNI Med

Neuronal classification

Basis for classification	Example	Functional implication	Structure
1. Axonal projection Goes to a distant brain area	Projection neuron or Principal neuron or Golgi type I cell (cortical motor neuron)	Affects different brain areas	Dorsal root ganglion cell
Stays in a local brain area	Intrinsic neuron or Interneuron or Golgi type II cell (cortical inhibitory neuron)	Affects only nearby neurons	Retinal bipolar cell

MUNI Med

45 Introduction-cellular base-synapse

Synapse

- Communication between
 neurons
- Electrical
- Chemical

http://www.slideshare.net/CsillaEgri/presentations

Electrical synapse

- Evolutionary old
- Less frequent than ch.
- Ubiquitous

http://www.slideshare.net/CsillaEgri/presentations

MUNI

MED

Electrical synapse

- Evolutionary old
- Less frequent than ch.
- Ubiquitous
- Gap junctions
- Bidirectional tranmission
- Fast
- Strength of signal may decrease

http://www.slideshare.net/CsillaEgri/presentations

MUNT

MED

Chemical synapse

- **Evolutionary young** •
- Majority type of s. ullet

Chemical synapse

- **Evolutionary young** ullet
- Majority type of s. ullet
- Unidirectional ullet
- Synaptic cleft ullet
- Neurotransmitter ۲
- **Constant signal** \bullet strength

Neurotrasnsmiter

http://www.slideshare.net/CsillaEgri/presentations

• Present in presinaptic neuron

Neurotrasnsmiter

http://www.slideshare.net/CsillaEgri/presentations

- Present in presinaptic neuron
- Release into the synaptic cleft due to depolarization of presynaptic neuron (Ca²⁺ dependent mechanism)

Neurotrasnsmiter

http://www.slideshare.net/CsillaEgri/presentations

- Present in presinaptic neuron
- Release into the synaptic cleft due to depolarization of presynaptic neuron (Ca²⁺ dependent mechanism)
- Specific receptor has to be present in postsynaptical membrane

Neuromuscular junction

https://classconnection.s3.amazonaws.com/754/flashcards/2034754/png/ch_7_pic_41349381290275.png

57 Introduction-cellular base-synapse

http://www.compoundchem.com/2015/07/30/neurotransmitters/

Excitatory/inhibtory postsynaptic potencial

http://www.slideshare.net/drpsdeb/presentations

Signal summation

http://www.slideshare.net/drpsdeb/presentations

MUNI

MED

Introduction-cellular base-synapse 59

Spatial

•

Signal summation

http://www.geon.us/Memory/images/Summation.jpg

Synaptic convergence

Average number of synapses in one neuronal cell in primates

- Primary visual cortex (area17)
 - aprox. 4 000
- Primary motor cortex (area4)

– aprox. 60 000

"Convergence" of multiple input fibers onto a single neuron. *A*, Multiple input fibers from a single source. *B*, Input fibers from multiple separate sources.

MUNI

MED

http://www.slideshare.net/drpsdeb/presentations

Synaptic divergence

Figure 46–11

"Divergence" in neuronal pathways. A, Divergence within a pathway to cause "amplification" of the signal. B, Divergence into multiple tracts to transmit the signal to separate areas.

MUNI Med

Networking

http://www.slideshare.net/drpsdeb/presentations

Networking

64 Introduction-cellular base-synapse

http://www.slideshare.net/drpsdeb/presentations

Neurotransmission vs. Neuromodulation

• Information transmission

• Regulation of NS activity

Neurotransmission

- Information transmission
- Specific

vs. Neuromodulation

• Regulation of NS activity

MED

• Diffuse (volume transmission)

Neurotransmission

- Information transmission
- Specific

vs. Neuromodulation

- Regulation of NS activity
- Diffuse (volume transmission)

• Receptors – ion channels

• Receptors – G-proteins

 $M \in D$

Neurotransmission

- Information transmission
- Specific

- Receptors ion channels
- Short duration
 - membrane potential changes

vs. Neuromodulation

- Regulation of NS activity
- Diffuse (volume transmission)
- Receptors G-proteins
- Longer duration
 - changes in synaptic properties

Acetylcholine

- Nucleus basalis (Meynerti) abd other nuclei
- Nicotin receptors
- Muscarin receptors
- Sleep/wake regulation
- Cognitive functions
- Behavior
- Emotions

Neocortex

Cingulate gyrus

Basal ganglia

¹ Basal forebrain constellation of

cholinergic neurons

including basal

Corpus callosum

Thalamus

² Dorsolateral pontine

tegmental constellation of cholinergic neurons

Noradrenalin

- Locus coeruleus
- Nuclei raphe caudalis
- Vigilance
- Responsiveness to unexpected stimuli
- Memory
- Learning

Dopamin

- Nigrostriatal system
 - Movement
 - Sensory stimuli
- Ventrotegmentno-mesolimbicfrontal system
 - Reward
 - Cognitive function
 - Emotional behavior
- Tubero-infundibular system
 - Hypotalamic-pituatory regulation
- D1 receptors excitatory
- D2 receptors inhibitory

http://www.slideshare.net/drpsdeb/presentations

Serotonin

- Nuclei raphe rostralis
- Nuclei raphe caudalis
- Anxiety/relaxation
- Impulsive behavior
- Sleep

http://www.slideshare.net/drpsdeb/presentations

Neuromodulatory systems

Jeffrey L. Krichmar, Adaptive Behavior 2008; 16; 385

MUNI

MED

http://image.slidesharecdn.com/neuromodulationincogniti on-140119031056-phpapp02/95/neuromodulation-incognition-5-638.jpg?cb=1419657931

Neuromodulatory systems

MUNI Med

MUNI NED